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1 Introduction

The literature studying variance risk premia in the options market is divided between two

approaches. One strand of the literature focuses on the differences between implied and

realized variances, which it uses to approximate the returns on variance swaps, while another

examines average returns on option portfolios. Though the continuous-time equivalence of

these two approaches was shown by Madan et al. (1998) and Britten-Jones and Neuberger

(2000), a full empirical reconciliation is missing from the literature.

We therefore propose a new approach for computing the integral that represents the

model-free implied variance derived in these papers. This “VIX integral,” which we approx-

imate using Simpson’s rule, is both the exact price of a traded portfolio of options and the

approximate price of an untraded variance swap. While we argue that working with option

portfolio returns is preferable to synthetic variance swaps, our new approach nevertheless

yields option portfolio returns that are more highly correlated with variance swap returns

than would be found using the CBOE’s own VIX formula to compute the integral.

Using our approach, we document a striking new finding of seasonal momentum in indi-

vidual equity options. Specifically, if a firm’s options performed well in lags that are multiples

of three or 12 months, then they are more likely to exhibit high returns in the current month.

This effect is distinct from the option momentum documented by Heston et al. (2021) and

somewhat stronger in terms of portfolio performance. Using the equivalence between op-

tion portfolio and variance swap returns, we show that seasonal momentum in options is

the result of substantial periodicity in realized variances that exceeds the observed periodic

pattern in implied variances.

In theory, computing model-free risk-neutral variance requires a continuum of strike prices

ranging from zero to infinity. Most literature has focused on S&P 500 Index options, which

conform reasonably well to this assumption, at least for shorter expiration dates. However,
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individual equity options are often liquid for a relatively small number of strikes, which

makes choices regarding interpolation and extrapolation more consequential. Some papers,

such as Bakshi et al. (2003) and Carr and Wu (2009), attempt to avoid the issue by focusing

on a small number of stocks with many liquid strikes. Others, like Driessen et al. (2009),

interpolate in the space of implied volatilities and make reasonable but arbitrary assumptions

about option values beyond the range of observed prices.

While approximation is a common feature of empirical asset pricing, we argue that the

use of approximated model-implied prices in computing risk premia is unnecessary. A cleaner

approach is to compute exact rates of return on tradable option portfolios, as was popular-

ized by Coval and Shumway (2001), who examined at-the-money straddles. An issue when

analyzing this type of portfolio is that its ability to proxy for pure variance risk may be

questionable. It is therefore preferable to work with what we term a “VIX portfolio,” which

is any portfolio (not just that implied by the CBOE’s own VIX formula) of tradable options

that is specifically constructed to capture the return on a variance claim. The challenge

is constructing a portfolio that can be implemented given the data limitations inherent to

working with individual equity options data.

Our approach is an application of Simpson’s rule to the problem computing the VIX

integral and its implied portfolio weights. Simpson’s rule approximates the integrand with a

quadratic polynomial, leading to faster convergence as the number of strike prices increases.

As a result, we find that risk-neutral variance can be reasonably approximated with as few

as three options, often when the CBOE’s formula and the rectangle rule fail badly. In addi-

tion, Simpson’s rule implies option portfolios whose returns are more highly correlated with

realized variance than corresponding returns from the CBOE or rectangle rules, particularly

when we use corridor adjustments from Bondarenko (2014) and Andersen et al. (2015) to

correct for truncation effects resulting from the lack of options with very high or low strike

prices.
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We apply portfolios constructed using Simpson’s rule to the analysis of seasonal mo-

mentum, or periodicity, in VIX portfolio returns. We find a periodic pattern that closely

matches a quarterly pattern of stock momentum documented by Heston and Sadka (2008).

It is also similar in that the persistence of seasonal momentum is long, as it retains strong

statistical significance at lags up to five years. Without accounting for transactions costs, the

annualized Sharpe ratio of a seasonal momentum strategy based on four quarters of lagged

returns is 3.31, which exceeds the Sharpe ratios of all other strategies, including momentum

and the volatility differential of Goyal and Saretto (2009).

As seasonal momentum is a type of momentum, it is critical to show that the two phenom-

ena are distinct. We demonstrate that past returns at both periodic lags and non-periodic

lags are predictive for future option returns. At horizons ranging from one to five years, both

types of lags exhibit significant predictive ability, though the relative importance of seasonal

versus non-seasonal momentum increases for more distant formation periods. In addition,

both regular and seasonal momentum retain significant explanatory power when included

together in Fama-MacBeth regressions. Seasonal momentum also survives controls for other

common option return predictors and is not driven by the quarterly earnings cycle.

Building on the close connection between VIX portfolio and variance swap returns, we

show that seasonal momentum is the result of strong periodicity in realized variance. When

realized variance is regressed on its own lags, periodic lags are of particular importance, and

including them separately from non-periodic lags increases forecast accuracy significantly.

When the implied variance is also included in the regression, it subsumes almost all of the

predictive power of past realized variances, except not the realized variances at periodic lags.

Thus, implied variances appear to anticipate future realized variance on average, but they

do not appear to fully anticipate the seasonal patterns.

In the next section, we discuss different ways of operationalizing the VIX formula and

demonstrate the advantages of using Simpson’s rule. Section 3 discusses the data we use
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in our empirical work. In Section 4, we examine alternative VIX integration rules in the

data, while Section 5 demonstrates seasonal momentum in VIX returns. Finally, Section 6

concludes.

2 Returns on model-free “VIX” portfolios

2.1 Hedged VIX returns

The most prominent published benchmarks for option prices are the Chicago Board of Op-

tions Exchange VIX index for S&P 500 Index options (CBOE, 20191) and the corresponding

equity-VIX indices for options on individual stocks.2 These VIX indices are based on port-

folios of options, weighted by the squared reciprocals of their strike prices. Carr and Wu

(2009) interpolated option prices to measure an idealized continuous VIX portfolio, and

then used a continuous-time variance swap approximation to the returns on their portfolio.

Although it is not strictly tradable given the approximated swap rate, the variance swap

approach has an intuitive advantage of decomposing returns into risk-neutral variance and

realized variance. We construct returns on a discrete daily-hedged analog of the continuous

variance swap option strategy. This method provides a tradable strategy, while preserving

the intuition of the variance swap decomposition.

The CBOE (2019) VIX index is based on the market value of a portfolio at time t

comprising options expiring at time T .

V (t;T ) = 2
∑
i

O(Ki, t;T )∆i

K2
i

, (1)

where O(K, t;T ) represents time t price of an out-of-the-money call or put option with

1CBOE White Paper used to construct the VIX index can be found at: www.cboe.com/micro/vix/
vixwhite.pdf

2Equity-VIX indices are available for just a few large firms, such as Apple: www.cboe.com/us/indices/
dashboard/vxapl

4



strike price K and expiration T , and ∆i represents the gap between adjacent strike prices.3

Importantly, VIX portfolios are ”model-free” because their construction does not depend on

any model parameters. Madan et al. (1998) showed that we can approximate the VIX price

with a continuous integral over strike prices.4

V̂ (t;T ) = 2

∫ ∞

0

O(K, t;T )

K2
dK. (2)

Given the spot price S(T ) at expiration, the option payoff O(K,T ;T ) is equal to max(S(T )−

K, 0) for a call option and max(K−S(T ), 0) for a put option. In the absence of intermediate

dividends, integrating these option payoffs over strike prices (2) shows the terminal payoff

of the idealized VIX portfolio.

V̂ (T ;T ) = −2 log

(
S(T )

S(t)(1 + rf )T−t

)
+ 2

(
S(T )

S(t)(1 + rf )T−t
− 1

)
, (3)

where rf is the daily risk-free interest rate. The first term in the payoff (3) represents selling

two units of the “log-portfolio”. The second term represents a costless static hedge that

leverages (the present value of) two dollars of stock at time t, and holds this hedge position

constant until expiration at time T . The combined payoff is a U-shaped function of the stock

price, resembling a squared stock return. Therefore, the price of this portfolio represents the

approximate (risk-neutral) variance of return. Since the S&P 500 VIX index and equity-

VIX indices on individual stocks represent standard deviation, they are proportional to the

square-root of the portfolio value V (t;T ).

Due to their U-shaped payoffs, the equity-VIX portfolios have (approximately) zero delta

when they are constructed. In other words, they are locally insensitive to movements in the

3The sum uses out-of-the-money options with respect to the forward value of the strike price, K(1+rf )
T−t.

4See also Demeterfi et al. (1999), Britten-Jones and Neuberger (2000), and Jiang and Tian (2005) for
various continuous-time derivations. Breeden and Litzenberger (1978) first expressed the risk-neutral density
in terms of the second derivative of the option price with respect to the strike price. Madan et al. (1998)
then derived the formula (2) using integration by parts twice.
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underlying stock price. But over time, the stock price will drift away from the bottom of

the U-shaped payoff, and the equity-VIX portfolios will become sensitive to the stock price.

Instead of using a fixed static hedge, we can further reduce risk of the VIX portfolios by

dynamic hedging. This replaces the second term of (3) with the gains and losses of a stock

position that is rebalanced daily and designed to optimally hedge the log portfolio.

The elasticity of option value with respect to the stock price generally depends on a model.

But due to the log-payoff (3), the delta of the idealized continuous-strike VIX portfolio does

not. As Bondarenko (2014) shows, the delta-hedge of the log-portfolio buys 1/F (t) shares

of stock for a price of S(t), and rebalances to maintains a constant hedge exposure of one

dollar. So, not only is the value of the VIX portfolio model-free, but its dynamic-hedge is also

model-free. This dynamic hedge keeps the delta of the discrete equity-VIX approximately

equal to zero, and reduces the volatility of returns (relative to using a fixed static hedge).

The dynamically hedged payoff is

Vhedged(T ;T ) = −2 log

(
S(T )

S(t)(1 + rf )T−t

)
+ 2

T∑
u=t+1

(rS(u)− rf ), (4)

where rS(u) represents the stock return on day u. We can replace the stock price in equation

(4) to express the Vhedged(T ;T ) payoff in terms of a telescoping series of daily stock returns

rS(u) at times u between t and T :

Vhedged(T ;T ) = −2
T∑

u=t+1

log

(
1 + rS(u)

1 + rf

)
+ 2

T∑
u=t+1

(rS(u)− rf ). (5)

When daily returns on the stock and risk-free rate are small, a second-order Taylor series

expansion shows that the dynamically hedged option portfolio (5) approximates the payoff
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of variance swap contract in Carr and Wu (2009):

Vhedged(T ;T ) ≈
T∑

u=t+1

(rS(u)− rf )
2. (6)

The return on the unhedged VIX portfolio from equation (1) is simply the proportional

change in its value

runhedged(t;T ) =
V (T ;T )− V (t;T )

V (t;T )
. (7)

The return on the dynamically hedged VIX portfolio is adjusted by the difference between

the static hedge term in (3) and the dynamic risk term in (4).

rhedged(t;T ) =

V (T ;T )− V (t;T )− 2

(
S(T )

S(t)(1+rf )T−t − 1−
T∑

u=t+1

(rS(u)− rf )

)
V (t;T )

. (8)

A comparison of the hedged return (8) with the Taylor series approximation (6) shows that

the dynamically hedged return on the VIX portfolio is approximately the realized variance

relative to the VIX portfolio price.

rhedged(t;T ) ≈

T∑
u=t+1

(rS(u)− rf )
2

V (t;T )
− 1. (9)

Carr and Wu (2009) used the variance swap approximation to analyze variance premiums

in the cross-section of option returns, and Bollerslev et al. (2009) used it implicitly when

forecasting returns. Dew-Becker et al. (2017) later applied it to multiple asset classes. In

unreported diagnostics, we found that the exact return on the underlying S&P 500 Index VIX

portfolio is 99% correlated with the variance swap approximation (6). In other words, the

dynamically hedged payoff on the index VIX portfolio is very close to the realized variance

over the month. But with individual stocks, the correlations of options returns with realized
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variance can be lower. Using returns on hedged option portfolios (8) is consistent with

previous research that measured delta-hedged returns, while preserving compatibility with

the variance swap literature (9).

An additional advantage of our benchmark approach is that it measures option portfolios

with all available strike prices. These portfolios maintain consistent sensitivity to volatility

because they always include at-the-money options. In a certain sense, a VIX portfolio is

always at-the-money. In contrast, Bakshi and Kapadia (2003) approach of delta-hedging a

single option will generally change its vega sensitivity when the option drifts away from the

money.

2.2 Computing variance indices with discrete strike prices

The calculations above use a finite set of options with discrete strike prices to approximate

infinite portfolio with a continuum of strike prices. In practice, the number of strikes may

be quite limited for options on individual equities, particularly for longer maturities or if a

requirement of positive open interest is imposed.

In this section we derive rectangle, CBOE, and Simpson’s methods to compute variance

indices. We provide a portfolio interpretation of each index given our aim of computing

exact returns.

Let V IX2 denote a general variance index for horizon T . Then e−rTV IX2 represents the

price of an option portfolio, where r is the interest rate. Following Madan et al. (1998), a

V IX2 portfolio should emulate the continuous U-shaped payoff of a hedged log-portfolio:

2

T

∫ ∞

0

|ST −K|
K2

dK = −2 log(ST/F ) + 2(ST/F − 1), (10)

where the forward price F equals erTS0.

We interpret V IX2 portfolios as linear integration rules. Rectangle rule quadrature
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approximates the value of the integral (10) with a summation over option strike prices Ki,

or

V IX2
rectangle =

2

T
erT

(∑
Ki<F

Put(Ki)

K2
i

∆i +
∑
Ki>F

Call(Ki)

K2
i

∆i

)
, (11)

where ∆i = (Ki+1 −Ki−1)/2. The rectangle equation (11) is obviously a portfolio, because

it is just a weighted sum of out-of-the-money options (puts on the left of F , calls on the

right). If the strike prices have equal spacing ∆ and the option functions are smooth, then

the rectangle rule converges with order O(∆2).

The CBOE VIX formula is5

V IX2
CBOE =

2

T
erT

( ∑
Ki<K0

Put(Ki)

K2
i

∆i +
∑

Ki>K0

Call(Ki)

K2
i

∆i

)

+
2

T
erT

Put(K0) + Call(K0)

2K2
0

∆0 −
1

T

(
F

K0

− 1

)2

, (12)

where K0 is the closest strike price below-the-money. The CBOE formula (12) uses an

average of put and call options with strike price K0, and subtracts a quadratic adjustment

term. The quadratic adjustment term is the forward value of a payment at expiration equal

to F−K0

TK2
0
(ST − K0). It represents the value of a short position of F−K0

TK2
0

shares, and a long

position in a bond paying F−K0

TK2
0
K0. Therefore, we can interpret the CBOE formula as a

portfolio of options, including a small adjustment of stock and bonds.

The CBOE method (12) resembles the trapezoid rule, but it is an inexact application

when strike prices are unequally spaced. It treats K0 and the next higher strike price K1

asymmetrically, and it gives different answers for currency options expressed in reciprocal

numeraire. Finally, it converges at O(∆2), no faster than the rectangle rule.

To improve convergence, we define Simpson’s method as an equally weighted average of

5See equation (1) of https://cdn.cboe.com/resources/vix/vixwhite.pdf.
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the rectangle rule, the trapezoid rule centered around K0, and the trapezoid rule centered

around K1. This agrees with the conventional definition of Simpson’s composite integration

rule in the case of equally spaced strike prices, but it also allows application when strike

prices are not equally spaced. This approximation can be adjusted for incorrectly integrating

options between K0 and K1 by subtracting the extra bowtie-shaped area between K0 and

K1,

1

T
erT
∫ K1

K0

|Call(K)− Put(K)|
K2

dK =
1

T

(
log

(
K0

F

)
+

F

K0

+ log

(
K1

F

)
+

F

K1

− 2

)
. (13)

The resulting formula is:

V IX2
Simpson′s =

2

T
erT

( ∑
Ki<K0

Put(Ki)

K2
i

∆i +
∑

Ki>K1

Call(Ki)

K2
i

∆i

)

+
2

T
erT ×

(
1

6

(
Call(K0)

K2
0

+
Put(K1)

K2
1

)
(K1 −K0) +

5

6

(
Put(K0)

K2
0

∆0 +
Call(K1)

K2
1

∆1

))
− 1

T
(log(

K0

F
) +

F

K0

+ log(
K1

F
) +

F

K1

− 2). (14)

Simpson’s formula (14) uses one-sixth weight on in-the-money options Call(K0) and Put(K1),

and five-sixths weight on out-of-the-money options Put(K0) and Call(K1). To compute re-

turns, the last line of (14) represents the value of a short position in 1
T
( 1
K0

− 2
F
+ 1

K1
) shares of

stock, and future payment of 1
T
(log(K0

F
)+log(K1

F
)) dollars. Simpson’s formula gives identical

values using currency options from either currency perspective. For smooth option functions

(four times differentiable), Simpson’s formula converges at O(∆4).

We can accelerate the convergence of Simpson’s method by estimating the integration

error. The local truncation error of the Simpson’s rule applied to a smooth function f(K) is

− 2
T
erT ∂4f(K)

∂K4
∆5

180
, where ∆ is the strike price interval. If the strike prices are equally spaced,

then integrating this truncation error and applying put-call parity gives an error estimate
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that is model-independent.

− 2∆4

180T
erT
(∫ F

−∞

∂4

∂K4

(
Put(K)

K2

)
dK +

∫ ∞

F

∂4

∂K4

(
Call(K)

K2

)
dK

)
=

∆4

5TF 4
. (15)

The resulting corrected-Simpson’s formula is

V IX2
corrected−Simpson′s = V IX2

Simpson′s −
∆4

5TF 4
. (16)

This integration correction (15) should be very small. If the strike price spacing ∆ is 10%

of the forward price F , then the relative magnitude should be only .00002
T

. After subtracting

this error (15), the corrected Simpson’s formula (14) converges at an astonishingly fast

O(∆5). For example, when the strike price intervals shrink by half, the asymptotic error

shrinks by a factor of 32.

Finally, there is a slight discrepancy among the different variance indices, because the

rectangle rule uses only out-of-the-money options, but the CBOE formula additionally uses

Call(K0), and Simpson’s rule uses both Call(K0) and Put(K1). We can eliminate these

extra options by using put-call parity. In that case, the CBOE formula (12) simplifies to:

V IX2
CBOE = V IX2

rectangle +
1

T

F −K0

K2
0

(∆0 − F +K0). (17)

The simplified CBOE formula (17) is the forward value of a portfolio of out-of-the-money

options, plus the forward value of ∆0−F+K0

TK2
0

(ST −K0).

Put-call parity also simplifies Simpson’s formula (14):

V IX2
Simpson′s = V IX2

rectangle +
erT

3T

(
K1 −K0 −∆0

K2
0

Put(K0) +
K1 −K0 −∆1

K2
1

Call(K1)

)
+

K1 −K0

3T

(
F −K0

K2
0

+
K1 − F

K2
1

)
+

1

T

(
log(

F

K0

)− F

K0

+ log(
F

K1

)− F

K1

+ 2

)
. (18)
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When the strike prices K−1, K0, K1, and K2 are equally spaced, then

K1 −K0 −∆0 = K1 −K0 −∆1 = 0, and the second term on the right side of the simplified

formula (18) vanishes. To compute returns, the second line of the simplified Simpson’s

formula (18) represents the forward value of

(K1−K0

3T
( 1
K2

0
− 1

K2
1
)+ 1

T
( 2
F
− 1

K0
− 1

K1
))ST + K1−K0

3T
( 1
K1

− 1
K0

)+ 1
T
(log(F/K0)+ log(F/K1)). We

use these simplified formulas (17) and (18) in empirical work because they have lower data

requirements and use a common set of out-of-the-money option prices.

2.3 Numerical accuracy

In this section, we perform an initial examination of the accuracy of the different integration

schemes using artificial data. Later, we will examine the performance of the different schemes

in our actual sample.

The setup we consider here is simple. Suppose that options trade on a grid of strikes that

are equidistant and separated by some constant ∆. Options with strikes that are below the

current spot price are puts, while options with strikes that are higher than the spot price

are calls. Thus, all options are OTM. Let K0 denote the strike of the put closest to ATM,

so that K1 = K0+∆ is the strike of the call closest to ATM. All option prices are generated

using the Black-Scholes formula assuming one period to expiration, a spot price of $1, and

a risk-free rate of zero.

The goal of our analysis is to determine the accuracy of the VIX formulas in Section

2.2 for different values of ∆, K0, and volatility. Specifically, how quickly do VIX estimates

converge to the true underlying volatility as ∆ → 0, and how is this convergence affected by

different choices of K0 and volatility?

To understand the importance of K0, consider the CBOE formula (17). If K0 is just

below the forward price (which is the same as the spot price in this setting), then F ≈ K0
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and V IX2
CBOE ≈ V IX2

rectangle. In contrast, if K0 is below the forward price by ∆/2, then

V IX2
CBOE = V IX2

rectangle +
1

T

∆2

4K2
0

> V IX2
rectangle. (19)

This is just one example of how the choice of K0 matters, but it illustrates the need to check

for sensitivity to its choice.

Figure 1 shows the results of these experiments. Each panel shows, using a logarithmic

scale, the absolute proportional error in the implied volatility, or |Implied/Actual−1|, for the

CBOE, rectangle, Simpson’s, and corrected-Simpson’s rules. Values along the horizontal axis

denote different values for ∆, which are all of the form 2−n, where n ∈ {2, 3, 4, 5, 6}. Numbers

along the top of each panel represent the number of options that have a non-negligible impact

on the VIX calculation, meaning that the value of the option price, divided by the square

of the strike price, is greater than 0.0001. Panels differ with respect to the values of K0 and

volatility that are assumed.

Panel A shows the case in which the value of K0 from the coarsest discretization, in which

∆ = .25, is equal to 0.77.6 This is approaching the lowest value that K0 can take in this

case. If it were below 0.75, then there would be another OTM put that was closer to ATM,

and that put’s strike would be chosen as K0. The volatility assumed in this panel is 10%.

If we interpret each period as one month, then this value corresponds to that of a typical

stock.

In this case, we see that the rectangle rule generally outperforms the CBOE’s rule.

Simpson’s rule has smaller errors for all but the coarsest grid of strikes, and the corrected

Simpson’s rule performs better still. The panel also confirms that the Simpson’s rule con-

verges to the true variance at a higher rate than either the rectangle or CBOE rules. The

corrected Simpson’s rule converges at an even faster rate.

6As ∆ → 0, K0 and K1 will both converge to the forward price. The value of K0 in the title of each panel
refers only to the value of K0 when ∆ = .25.
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Results are much the same for Panel B, in which K0 is near its maximum value in the

coarsest discretization. The main difference is that Simpson’s rule, in this case, outperforms

the rectangle rule for even the coarsest discretization. In Panel C, in which the closest-to-

ATM call and put are equidistant from the forward price, errors in the CBOE and rectangle

formulas are similarly large, but the Simpson’s formula is better still. Even when the distance

between strikes (∆) is 25% of the spot price, the error in the Simpson’s implied variance is

only around 1% of the true variance.

Finally, Panel D, which is otherwise similar to Panel A, shows the effects of an increase

in underlying volatility. In this case all methods produce smaller errors, but the rankings are

unaffected. The reason for the improved performance is that the larger volatility increases

the range of strikes over which the VIX integrand is non-negligible. Effectively, in this setup

at least, a higher volatility results in a larger number of options that convey information

about volatility. Whether this effect is apparent in actual data, in which options of many

strikes do not trade, is less clear.

2.4 The corridor fix

In addition to the assumption of a continuum of strikes, the model-free implied variance (2)

assumes the existence of strikes over (0,∞). In practice, strikes are generally found in a

narrower range that brackets the current spot price. The result of this truncation is that the

integral in (2), when computed over a narrower range, will be downward biased. This bias is

not addressed by the use of Simpson’s rule, which only improves the interpolation between

available strikes.

Truncation does not present a major problem for the calculation of option portfolio

returns. It does create some issues, such as the possibility that the portfolio return may not

provide a perfect replication of the hypothetical variance swap return. It is also likely that

the returns on the ATM options that are available differ from the OTM options that are
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not. The option portfolio’s return nevertheless represents the rate of appreciation on a set

of investable assets.

In contrast, truncation can have a highly deleterious effect on the hypothetical variance

swap returns that the literature often studies. The downward bias in the VIX that is due

to truncation will cause a corresponding upward bias in variance swap returns. While the

issue has long been understood in the literature, many resolutions are unsatisfactory. Some

researchers, such as Bakshi et al. (2003) and Carr and Wu (2009) restrict their studies to

a small number of stocks with a wide range of strikes. Others, like Driessen et al. (2009),

extrapolate beyond the range of available strikes, effectively guessing the prices of options

that do not exist.

Fortunately, Andersen et al. (2015) provide an alternative approach that avoids extrap-

olation and that can be applied even with a narrow range of strikes. While their primary

motivation was to separate the impacts of volatility and jump risk, their method is easily

applied for the correction of truncation bias. They show that the corridor implied variance,

defined as

V̂ (t;T ) = 2

∫ KH

KL

O(K, t;T )

K2
dK, (20)

represents the fair valuation of a contract that pays

T∑
u=t+1

x(u), (21)

where

x(t) = 2

(
F (t)

F̄ (t)

(
F̄ (t)− F̄ (t− 1)

F̄ (t− 1)

)
− ln

F̄ (t)

F̄ (t− 1)

)
(22)
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and

F̄ (t) =


KL F (t) < KL

F (t) KL ≤ F (t) ≤ KH

KH F (t) > KH .

(23)

Andersen et al. (2015) refer to x(t) as the “corridor-truncated version of the squared weighted

return,” as its formula closely approximates that description.

In our results below, we use the corridor approach in several ways. First, in addition

to using the various VIX calculations in Section 2.2 to compute hypothetical variance swap

returns, which will be downward biased as the result of truncation bias, we use the same

VIX measures to compute corridor variance swap returns, which use the same denominator

but change the numerator from the sum of squared daily returns to (21).

Secondly, following Proposition 4 of Bondarenko (2014), we use a corridor approach for

computing the model-free hedge for the VIX portfolio. Specifically, Section 2.1 showed that

the model-free hedge for the VIX portfolio was 1/F (t). Following Bondarenko (2014), the

hedge of the truncated portfolio, with minimum and maximum strike prices of KL and KH ,

respectively, is 1/F̄ (t). Below, we compare the performance of both hedges with each other

and with the Black-Scholes model.

In both cases, the values of KL is equal to the lowest strike price available minus one half

of the distance between that strike price and the one above it. Similarly, KH is the highest

strike plus one half the distance from the next highest. The rationale is that our discrete

integrals, whether based on the CBOE, rectangle, or Simpson’s rule, are approximated using

rectangles or trapezoids that are centered at each strike price and that therefore include

some mass below the lowest strike and above the highest.

16



2.5 A simulation analysis

In this section, we perform a further examination of the accuracy of different integration

schemes based on our actual sample, whose construction is specified in Section 3. The goal

is to evaluate the accuracy of the four VIX formulas relative to the true underlying corridor

implied variance under realistic market conditions.

We simulate option prices that match the actual sample closely. The underlying stock

prices, option strike prices, option maturities, and risk-free rates are the same as those in

the data. Following Aschakulporn and Zhang (2022), option prices are generated by Gram-

Charlier expansion using time-varying distributional parameters. The volatility for each

stock in each month is the average of the implied volatilities of all options in the stock’s VIX

portfolio. Risk neutral skewness and kurtosis are computed following Bakshi et al. (2003).

The median firm in our simulation has five strikes, matching the sample we describe

below. Because these strike prices are the same as those in our actual sample, they are not

necessarily equidistant. Furthermore, because the lowest and highest strike prices may not

be far enough from the forward price, the values we compute must be interpreted as corridor

implied variances.

We compute model-free corridor implied variances using the CBOE, rectangle, Simpson’s,

and corrected Simpson’s rules and compare them to true values, which are calculated by

interpolating a 500-point grid of strike prices within the corridor. We measure the accuracy

using absolute percentage error:

∣∣∣∣V IX2 − V IX2
True

V IX2
True

∣∣∣∣ .
Table 1 reports simulation results: Panel A presents statistics on the percentage errors,

while panel B describes the simulation parameters. All statistics are from a sample that
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pools all stocks over all dates.

Panel A shows that the Simpson’s and corrected Simpson’s methods clearly dominate,

followed by the rectangle rule and then the CBOE rule. The corrected Simpson’s method

generates the lowest average error of 1.24%, but the uncorrected Simpson’s method is nearly

as accurate. In contrast, the mean for the CBOE method is 12.79%, with a standard devi-

ation of 13%. The rectangle rule improves on CBOE substantially with an average error of

4.70% and a standard deviation of 9.07%, but does not match the accuracy of Simpson’s.

The medians are below means in all cases, implying that the distribution of errors is

right skewed. If we focus on the 90th percentiles, the outperformance of the Simpson’s

and corrected Simpson’s methods is even more obvious, with 90th percentile errors that are

less than one tenth of corresponding value for the CBOE rule and one quarter that of the

rectangle rule. These differences are economically consequential.

We conclude that the outperformance of the Simpson’s rule relative to the CBOE and

rectangle rules in realistic data is consistent with our Black-Scholes exercise in Section 2.3.

In contrast to that exercise, however, we find relatively little incremental gain from using

the corrected Simpson’s method. This is likely due to the uncorrected rule already being

accurate, and it may also result from the assumption of equally spaced strikes, which was

assumed in the derivation of the Simpson’s rule correction.7 The results below are therefore

based on the somewhat simpler uncorrected Simpson’s rule.

3 Data

This paper uses data from the OptionMetrics Ivy DB database from January 1996 to Novem-

ber 2020. These data provide daily closing bid and ask quotes for U.S. equity options. We use

the T-bill rate of appropriate maturity (interpolated when necessary) from OptionMetrics

7When implementing the corrected Simpson’s rule following (16), we assume that the ∆, the distance
between strike prices, is equal to the difference between the strikes immediately below and above the forward
price.
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as the risk-free rate. Finally, we obtain information about stock returns, dividends, and firm

characteristics from CRSP and Compustat.

We apply a series of filters to our primary sample. Following Driessen et al. (2009),

we remove all observations for which the option open interest is equal to zero, in order

to eliminate options with no liquidity. We discard options with zero bid prices, and with

missing implied volatility or delta (which occurs for options with nonstandard settlement

or for options with intrinsic value above the current mid price). We delete all observations

whose ask price is lower than the bid price, and eliminate options whose prices violate

arbitrage bounds. We also exclude firm-month observations if the underlying stock price is

less than $5 on the formation date or if the stock has a split or pays a dividend during the

remaining life of the option. Thus, the early exercise premium is small and the seasonality

is not caused by dividends. We require at least three OTM options, including one put and

one call, for each stock, and we construct VIX portfolio prices using bid-ask midpoints. We

only keep observations with positive VIX prices calculated with option bid prices to avoid

very small VIX. Our final sample includes 221,157 firm-month observations with 1,464,062

option contracts. On average, each equity VIX portfolio consists of 6.62 option contracts.

We use the primary sample to compute holding period returns, and the relatively stringent

requirements on it serve to ensure that these returns are valid and not overly affected by

microstructure biases or other issues. However, requirements such as positive open interest

and nonzero bid prices reduce the number of available option contracts, which in a number

of cases makes it impossible to compute VIX portfolio returns, thereby reducing our sample

size.

We therefore relax the positivity constraints on open interest and bid prices in a secondary

sample, which we use solely for computing returns during the formation period. While such

returns may not be as meaningful, they are nevertheless valid as signals, and any noise or bias

that results from the use of less reliable data should only bias our results against significant
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predictability of future returns.

The official CBOE VIX methodology combines options with different expiration dates

to achieve a 30-day weighted-average maturity. Our analysis uncovers temporal periodicity

in option prices and returns. To measure returns accurately, we must calculate portfolio

values without interpolating option prices across different maturities. Therefore, we establish

option positions in equity-VIX portfolios on the third Friday of a month. When this date is

a holiday, the portfolio formation is one day before. This avoids interpolation by using exact

option prices instead of 30-day weighted-averages used in the CBOE’s (2019) original VIX

methodology.

4 Alternative VIX rules

4.1 Convergence of different integration rules

In Section 2.3, we investigated the accuracy of the different integration rules using several

simple Black-Scholes examples. Here, we attempt to assess the convergence of the three VIX

formulas in the actual data.

One indication of a problem withe the CBOE formula is the fact that it produces negative

implied variances, which happens 20 times in our sample. This never occurs for Simpson’s

rule or the rectangle rule, though it is a theoretical possibility for Simpson’s rule. And

while the frequency of negative implied variances for the CBOE rule is extremely small,

their presence indicates a more fundamental problem with the CBOE formula that leads to

inaccuracy in a much larger number of cases, as our results below demonstrate.

Because we are not able to measure the true risk-neutral volatility, it is impossible to

say whether any of the methods considered converge to true values. We can nevertheless

examine the value of having a larger number of option contracts, and how that value differs

across methods, by comparing VIX prices constructed from all available contracts to those
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resulting from just a subset.

This is the experiment we report in Table 2. We begin by constructing a sample of

firm/months in which there are at least seven OTM options available, with at least three

calls and three puts. From these options, we compute a VIX price following each of the three

integration rules described above.

Ordering the options from lowest to highest strike price, we then discard the options in

even positions, keeping only the odds. The resulting subset therefore contains half or slightly

more than half of the original set. We recompute VIX prices from these subsets and compare

the values with those of the full set.

Table 2 shows summary statistics on

∣∣∣∣V IX2
Half − V IX2

All

V IX2
All

∣∣∣∣ ,
where smaller values indicate that VIX prices based on the subset are more similar to those

based on the full set. A smaller value is therefore consistent with an integration scheme that

converges more quickly. We show statistics for all firms with at least seven strikes and for

samples that include firms with exactly seven, 11, or 15 strikes.

The table shows, uniformly, that the Simpson’s method dominates the other two. The

rectangle rule follows, and the CBOE rule is last. To understand the results, consider the

“7 Strikes” row from Panel C. This row reports that the average absolute proportional

deviation is just 4.82%. This implies that in options with seven strikes, using just four

of them is sufficient to get within a few percentage points of the value obtained with all

seven. In contrast, the corresponding mean for the CBOE method is 21.76%, indicating that

deviations are more than four times greater, on average, using the CBOE rule. The rectangle

rule improves on CBOE substantially, but does not match the performance of Simpson.

The table shows that medians are in all cases below means, implying that the distribution
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of absolute deviations is right skewed. Looking at the 90th percentiles, we see that the CBOE

rule performs very poorly in some cases. The Simpson’s approach is not perfect, the number

of substantial failures is comparatively low.

When there are many strikes, Simpson’s rule continues to outperform, with a mean

less than one third of CBOE and about 60% of the rectangle rule. These differences are

large enough to be economically consequential. We conclude that the performance of the

Simpson’s rule in actual data is consistent with its performance in our Black-Scholes exercise.

Even with a small number of options available, our results suggest that VIX prices may be

estimated reasonably well.

4.2 Alternative VIX returns

In this section we compare the various ways in which the return on a variance claim can

be calculated. There are several dimensions to the differences between approaches. Returns

can be computed exactly using the observed prices and payoffs of options, or they can be

approximated using theoretical variance swap prices.

Among the approaches that rely on option returns directly, variation arises from different

integration schemes, which put different weights on the option contracts included in the VIX

portfolio. Option portfolio returns are also affected by whether or not the portfolio is delta-

hedged and, if so, whether the a model-free or Black-Scholes hedge ratio is used.

Among variance swap returns, the integration scheme also affects the calculations. Re-

turns will also be affected by whether or not a corridor approach is used to correct for

the truncation bias that results from the range of strikes being too narrow to accurately

approximate the integral (2).

In fact, as we will see below, the integration scheme is even more important for variance

swap returns than it is for option portfolios. With option portfolios, the integration scheme

changes the portfolio weights. But regardless of those weights, the portfolio return calculated
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is the feasible return on some strategy. In other words, the payoff and the price of the strategy

are consistent.

In contrast, integration errors will affect the variance swap price, but the payoff of the

variance swap (or the corridor variance swap) is unaffected by these errors. As a result, the

payoff and the price are inconsistent, and the variance swap return that is computed does

not represent the true return on any tradable strategy.

We begin the analysis by an examination of stock-level returns on different option strate-

gies. Table 3 shows the returns on six different option strategies separately for the CBOE,

rectangle, and Simpson methods. The first strategy is an unhedged option portfolio. The

next three are dynamically hedged portfolios, where the hedge ratios considered include

Black-Scholes, the model-free hedge, and the model-free hedge that incorporates the corridor

effect. Finally, we include variance swap returns with and without the corridor adjustment.

The simple statistics shown use a pooled sample containing all firms on all dates.

A few results stand out. First, there are relatively minor differences between the returns

on different option portfolios, though average returns based on the CBOE integration rule are

somewhat less negative than those of the rectangle and Simpson rules. Hedging also makes

option portfolio returns slightly more negative on average, which is the result of short-term

reversal in stock returns.

While different hedging approaches are similar in terms of their means, the dispersion in

hedged returns varies significantly depending on the hedge ratio that is used. In particular,

the model-free hedge without a corridor adjustment has a much larger standard deviation

than the Black-Scholes hedge or the model-free hedge that makes the corridor adjustment.

This indicates that truncation is a significant issue in the data.

While the different integration rules are similar for option portfolio returns, they differ

to a much greater degree for variance swap returns. For the CBOE rule, the variance swap

return is similar, in terms of means, to a hedged option portfolio, but its standard deviation
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is much higher, indicating that these two returns are not as close in practice as they are in

theory. Interpreting the VIX as the price of a corridor variance swap, we then replace the

numerator of the variance swap return with the payoff of the corridor contract. This results

in a standard deviation that is in line with the more accurately hedged option portfolios.

However, the mean of the corridor variance swap return is much lower. Altogether, these

results suggest that there is no close equivalence between option portfolio and variance swap

returns when the CBOE rule is used.

For the rectangle and Simpson’s rules, the variance swap returns are on average positive,

which is inconsistent with the negative volatility risk premium that is more expected. They

are also substantially more volatile than option portfolios hedged using Black-Scholes or the

model-free corridor approach. The corridor swap is again lower, consistent with a significant

truncation bias, and standard deviations are substantially lower as well. In addition, for both

the rectangle and Simpson rules, returns on the corridor variance swap match those of the

hedged option portfolios (except for the model-free with no corridor fix) closely, consistent

with theory.

For comparison, Panel D of Table 3 includes an alternative integration rule that is outside

the framework we have discussed. In this approach, we follow Carr and Wu (2009) and

linearly interpolate the implied volatility curve between available strikes. These interpolated

values are then converted into a 500-point grid of option prices that are used to perform the

integration in (2), except that the integration range is restricted to the lowest and highest

available strike.8 Since we do not extrapolate beyond the range of available strikes, as do

many papers such as Driessen et al. (2009), we interpret the result as a corridor variance

swap price and compute the return on that strategy following Andersen et al. (2015).

Because we do not study this interpolation scheme in detail, we view the results in Panel

8Because the integration here relies on a fine grid of interpolated implied volatilities, there is no need for
KL and KH to be lower or higher than the minimum and maximum strikes, as discussed in Section 2.4.
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D with caution. Nevertheless, it is interesting to note that they are reasonably close matches

for the corridor variance swaps constructed using the rectangle and CBOE rules. They are

also similar to several hedged option portfolio returns, including those that use the Black-

Scholes and corridor model-free hedges for the rectangle and Simpson rules.

To better establish a strong empirical link between option portfolio returns and variance

swap returns, Table 4 analyzes correlations between different returns. In each month of our

sample, we compute the correlation between two different return measures, and the table

reports statistics on the time series of these correlation measures. As before, we report values

for each of the three integration methods.

Overall, correlations are high for all three methods, indicating that option portfolio and

variance swap returns largely capture the same risks. However, these correlations are higher

for Simpson’s rule than they are for the CBOE and rectangle rules. This is particularly true

when the option portfolio uses a model-free hedge.

Taking Tables 3 and 4 together, it appears that Simpson’s rule implies option portfolio

and variance swap returns that are more consistent with each other than are the returns

implied by other methods.

5 Seasonal Momentum

5.1 Univariate analysis

Equation (9) shows that the gross return on an equity-VIX portfolio for the ith stock over

month t is approximately the realized variance, RVi(t), divided by the cost of the equity-VIX

portfolio V IX2
i (t− 1). In logarithms, this relationship is

log(1 + ri(t)) ≈ log(RVi(t))− log(V IX2
i (t− 1)). (24)
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This return decomposition allows for greater visibility into the sources of option return

predictability, as we will demonstrate.

Heston et al. (2021) show that option returns display momentum. That is, stocks whose

options had relatively high returns in the past 2-36 months tend to have options with high

returns going forward. The effect is strong, robust, and unexplained by other predictors or

exposures to common factors. It is strong in delta-hedged VIX portfolios or simple at-the-

money straddles.

The close relationship between VIX and variance swap returns implies that predictability

in equity-VIX returns reflects predictability in realized variance relative to equity-VIX prices.

To diagnose the sources of momentum profits, we first run the cross-sectional regression

log(RVi(t)) = γ0,t + γk,t · log(RVi(t− k)) + ϵi(t). (25)

The coefficient estimate γk,t shows the extent to which the cross-section of realized variance in

one month is predicted by the previous cross-section lagged by k-months. The average of γk,t

over all months t shows the average relationship. Figure 2 (a) shows that the cross-section

of realized variance is persistent, with coefficients exceeding 0.6 for short monthly lags, and

declining as lags grow to five years. Figure 2 (a) also displays the corresponding average

coefficients for the analogous regression of the cross-section of logarithms of equity-VIX

prices log(V IX2
i (t)) on their own lags. Option prices are even more persistent than realized

variance, with average coefficients exceeding 0.8 for short monthly lags, and remaining above

0.5 even for lags of five years.

What is perhaps more striking is that both the realized variance and V IX2 coefficients

exhibit clear periodicity. Coefficients peak at multiples of three lags, indicating a quarterly

seasonal pattern across stocks, even at multi-year lags.

The similarity of the seasonal patterns in realized variance and V IX2 coefficients would
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seem to suggest that option prices anticipate the pattern in future variance. Were this true,

the log variance swap return log(RVi(t)) − log(V IX2
i (t − 1)) might not show any seasonal

effects. Figure 2 (b) shows that this is not the case, however. Variance swap coefficients show

the same quarterly peaks as their components, suggesting that option prices fail to properly

anticipate the periodicity of realized variance. While the persistence of the variance swap

return is lower, it remains positive, which is consistent with Heston et al. (2021) finding of

momentum.

Finally, Figure 2 (c) examines dynamically hedged returns on the VIX portfolios, where

we use model-free hedge ratios with the corridor adjustment. While coefficient estimates are

not as clearly downward sloping, quarterly peaks are still evident, which is consistent with

the close connection between variance swap and option portfolio returns.

An alternative measurement of seasonal momentum is provided by portfolio sorts, which

are examined in Table 5. In Panel A, we analyze formation periods that only include lags

that are multiples of three or 12, which respectively capture quarterly and annual seasonal

momentum. In some cases, formation periods either include just a single lag, while in

other cases they include lags as much as three years before the holding period. All of these

formation periods result in positive and highly significant return spreads, though quarterly

seasonal momentum is somewhat stronger.

Panel B examines formation periods in which all lags, starting with lag 2, and including

lags out to 12 or 36 months.9 Return spreads for these strategies are similarly large and

significant.

Panel C shows the results of quintile sorts on other variables examined in the empirical

options literature. One is the difference between implied and historical volatilities, shown

by Goyal and Saretto (2009) to forecast future option returns. Another is the amount of

9Similar to the stock momentum literature, we exclude lag 1 because Heston et al. (2021) find some
evidence that it is related to short-term reversal rather than momentum.
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idiosyncratic volatility in the underlying stock, as defined by Cao and Han (2013). Sorting by

market cap of the underling firm also generates a spread in straddle returns, as demonstrated

first by Cao et al. (2021). From Vasquez (2017), the slope of the term structure of at-the-

money implied volatilities is the fourth measure. The final measure is the slope of the implied

volatility curve (the “smirk”) from one-month options. This is related to the skewness

variable examined by Bali and Murray (2013).

Table 6 shows long-short portfolios formed on the basis of different characteristics. The

seasonal momentum strategy based on lags 3, 6, 9, and 12 has a monthly Sharpe ratio of

0.956, or 3.31 annualized. While this value does not account for transactions costs, it is

nevertheless surprisingly large. The seasonal momentum strategy based on lags {3, 6, ..., 36}

also does well, with a monthly Sharpe ratio of 0.739.

Among other strategies, the “2 to 12” momentum portfolios is most competitive, offering

a monthly Sharpe ratio of 0.927. The IV-HV difference examined by Goyal and Saretto

(2009) has a slightly lower Sharpe ratio, at 0.732. Among these top performers, skewness

and maximum drawdown are moderate, at least relative to a strategy that shorts the SPX

VIX portfolio or takes an equally weighted short position in equity VIX portfolios. Thus,

there is no evidence that the profitability of seasonal momentum can be explained by its

exposure to downside risk.

5.2 Seasonal vs. non-seasonal momentum

We perform a number of different analyses to establish that seasonal momentum is distinct

from the standard momentum strategy examined by Heston et al. (2021).

Table 7 reports results from portfolio sorts. Each entry in the table is the average return

on a high-minus-low portfolio formed on the basis of past returns over some formation period.

In all cases, the holding period is one month, so differences between the table are driven

entirely by alternative formation periods (and the changes to the sample that result from
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using different formation periods).

The first column of the table, labeled “Lags 1 to 12,” shows the results of different

formation periods that are subsets of these 12 months. The “All” row includes all 12, while

other rows include only months that are in or outside of the same quarterly cycle. The

“Annual” row would only include lag 12, while the “Non-annual” row includes lags 1 to 11.

Finally, the “Quarterly non-annual” includes the quarterly lags excluding the 12th.

Other columns of the table are similar but are based on longer lags. For example, the

“Quarterly” value for the “Lags 25 to 36” column is based on those months, between lags 25

to 36 that are on the same quarterly cycle, namely 27, 30, 33, and 36. The “Annual” value

for “Lags 49 to 60” only includes the 60th lag in the formation period.

Incredibly, every formation period shown in the table results in a positive and statistically

significant return spread, though results are stronger for more recent formation periods.

Throughout the table, the largest spreads are either for the “quarterly” or “quarterly non-

annual” strategies. The strong performance of the latter suggests that annual lags (12, 24,

...), while capable of producing return spreads by themselves, are not particularly important

relative to other lags included in the quarterly strategy.

The fact that months in and outside of the same quarterly cycle both predict future

returns suggests that seasonal and non-seasonal momentum each play a role in predicting

future returns. It is possible, however, that the informativeness of one of these measures

somehow proxies for that in the other. We examine this possibility using Fama-MacBeth

regressions that include seasonal and non-seasonal momentum measures. We also use these

regressions to gauge whether annual seasonal patterns offers predictability that is distinct

from quarterly seasonality.

Table 8 reports results of regressions with three different explanatory variables. One is

quarterly seasonality, one is annual, and one is a standard momentum measure. The panels

of the table differ with respect to the length of the formation period. Panel A shows results
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in which the formation period includes some or all of the first 12 lags, while Panel B includes

the first 36 lags. Panel C uses up to lag 36 to compute seasonality measures but only up to

12 lags to compute momentum.

Panel A shows that each predictor is significant individually. Quarterly seasonality and

momentum are also significant in multiple regressions, implying that seasonality and momen-

tum convey distinct information. Annual seasonality remains significant when controlling

for quarterly seasonality and/or momentum, but it is clearly the least important of the three

regressors. Panel B extends the formation periods as far as lag 36, both for seasonality and

momentum measures. While annual seasonality weakens in this case, quarterly seasonality

and momentum remain distinct. Finally, Panel C uses the longer formation period for sea-

sonality but the shorter one for momentum. We report these results as a check given the

evidence in Heston et al. (2021) and in Table 5 that a shorter momentum formation period

may work better.

Overall 8 shows that seasonality and momentum signals contain different information.

Between quarterly and annual seasonality, only the former appears to be robust.

Table 9 examines whether the predictive power of seasonality is subsumed by other

option predictors. Overall, the table shows that seasonality is distinct from other predictors,

retaining its statistical significance when other controls are included. Seasonal momentum is

stronger when a longer formation period is used, and including seasonality into a regression

with other predictors has little effect on the other coefficients. The exception is momentum,

whose importance diminishes when seasonality is included. In one case, momentum becomes

insignificant, though this is generally not the case. We conclude that seasonality provides

predictive information about future option returns that is distinct from that reflected in

momentum or in other common predictors.
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5.3 Robustness

In this section, we ask whether results are robust over time and across different types of

stocks. We examine the relationship between seasonal momentum and other quarterly cycles

in the stock and options markets, such as earnings announcements. Next, we investigate the

relationship between seasonal momentum and various proxies for limits to arbitrage. Finally,

we ask whether the profitability of seasonal momentum is itself seasonal.

Dubinsky et al. (2019) show that quarterly earnings announcements have large effects on

option implied volatility and are associated with a rise in jump risk premia. Gao et al. (2018)

also show higher straddle returns in the days around earnings announcements. Since these

announcements occur on a regular quarterly cycle, it is natural to think that they might be

related to our finding of quarterly seasonal momentum.

We examine this possibility in Table 10. Panel A shows the results of sorts based on

seasonal momentum in which the sample consists of firms with earnings announcements in

the holding period and in each month of the formation period. Panel B examines a sample

in which there are no earnings months in the holding or formation periods. Consistent with

the fact that earnings announcements are quarterly, the average number of firms used in

Panel A is about half that of Panel B.

Comparing Panels A and B, we see strong evidence of seasonal momentum in both

samples, with a moderately larger and more significant high-low spread for firms not making

an earnings announcement. This result holds for two different formation periods. Thus,

our results cannot be driven by systematic differences between announcement and non-

announcement months.

Another quarterly cycle that affects the options market is the cycle of option expiration

dates. While there are options expiring in each calendar month, long-dated options are only

available with expiration dates in either the first, second, or third month of each quarter.
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Stocks differ with respect to which of the three months their long-dated options expire in,

which is randomly assigned and persistent over time.

By the time we include them in our sample, all options have one month until expiration.

However, those options that are in their firm’s expiration cycle have been listed on option

exchanges for much longer than options in other months that are not in that cycle. Possibly

for this reason, options that are in the firm’s quarterly expiration cycle typically have higher

volume and open interest.

Panels C and D compare options expiring in the quarterly cycle to those expiring outside

of it. In short, the differences in the high-low returns of the two groups are minor. The

expiration cycle is not a significant driver of seasonal momentum.

In Table 11, we examine the relationship between seasonal momentum and various proxies

for limits to arbitrage. We perform a sequential double sort, first sorting into terciles based on

some firm characteristic and then into terciles based on lagged returns over some formation

period. The proxies for limits to arbitrage include firm size, stock illiquidity, option illiquidity,

and analyst coverage. Size measures the stock’s most recent market equity capitalization,

while our proxy for stock illiquidity is the average Amihud (2002) measure over the last year.

Option illiquidity is computed as the average percentage bid-ask spread of the puts and calls

in each VIX portfolio, also averaged over the most recent 12 months.

In Table 11, each value in the rows labeled “Low,” “Medium,” and “High” shows the

average return of a portfolio that buys options with high seasonal momentum and sells

options with low seasonal momentum. The row labels refer to the levels of the four proxies

for limits to arbitrage. Finally, the “High - Low” row shows the difference between two

different long-short option portfolios.

The table shows that seasonal momentum remains profitable in each tercile based on

each limits to arbitrage proxy. This holds for either definition of seasonal momentum. Thus,

seasonal momentum is pervasive in the cross-section of VIX portfolios.
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The table also shows a consistent pattern of larger return spreads when limits to arbitrage

are stronger (smaller size, more illiquidity, less analyst coverage). However, these differences

are only statistically significant for three proxies when the shorter formation period is used.

Results using the longer formation period are consistent but statistically marginal.

Next, we examine the profitability of seasonal momentum over the 12 months of the year.

Figure 3 plots the average high-low returns for each calendar month, where the two panels

examine different formation periods. Vertical lines depict 95% confidence intervals.

Overall, it seems that seasonal momentum is robust over the calendar year. With a

formation period that includes just the four most recent periodic lags, the average high-low

return is significant in each of the 12 months. Using the most recent 12 periodic lags results

in some loss of significance in March and August, but there is no obvious pattern that would

suggest this is anything other than sampling error.

Our final robustness check is to analyze the profitability of seasonal momentum over

different subsamples. Figure 4 plots five-year moving averages of the rate of return on

various momentum strategies. Of primary interest is seasonal momentum, though standard

and non-seasonal momentum are included for comparison. Panel A examines formation

periods based on the first 12 lags of returns, while Panel B considers the first 36 lags.

In both panels, each variety of momentum is positive in each five-year subsample. And

while the figure does not show confidence intervals, the seasonal and standard momentum

strategy returns are statistically significant, at the 5% level, in each five-year subsample.

Non-quarterly momentum is statistically significant in most subsamples, but not all.

Overall, while the profitability of seasonal momentum was slightly lower in the second

half of our sample, it is remarkably stable and remains high even at the end of our sample.
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6 Seasonal patterns in realized and implied variances

As discussed in Section 5.1, Figure 2 suggests that option prices fail to anticipate the peri-

odicity in realized variance. In this section, we formally test this hypothesis and quantify

the size of this failure.

We begin by estimating forecast regressions that are full or restricted versions of the cross

sectional regression

lnRCVi(t) = α+β
1

K/3

∑
k∈{3,
6,...,K}

lnRCVi(t−k)+δ
1

K

∑
k∈{1,
2,...K}

lnRCVi(t−k)+γ lnV IXi(t−1)+ϵi(t),

(26)

where RCV denotes realized corridor variance and where K is either 12 or 36. The first two

regressors represent past average variances during the same month of the quarterly cycle and

over all months. The last regressor is the implied variance corresponding to the period over

which RCVi(t) is computed.

Table 12 shows results from these regressions, where Panel A uses a maximum of 12 lags

(K = 12) and Panel B uses a maximum of 36. The first regressions include only the δ terms

and therefore only capture the persistence of volatility over time. Coefficients are moderately

below one, indicating reversion to the mean.

The next regression in each panel adds the β terms to measure the strength of quarterly

periodicity in realized variances. In both panels, but particularly in panel B, the seasonal

average offers significant incremental predictive power relative to the all month average.

The next regression in each panel omits the seasonal average and adds the log implied

variance, lnV IXi(t−1), observed immediately prior to the period over which the dependent

variable lnRVi(t) is calculated. The purpose of these regressions is to show that most of the

explanatory power of past realized variances is subsumed by lnV IXi(t− 1), as evidenced by

the fact that the estimate of δ is much smaller than the same coefficient in the first regression
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of each panel, which omitted lnV IXi(t− 1).

The fourth regression in each panel includes all three explanatory variables. While results

in Panel A are weak, Panel B shows clearly that implied variance does not subsume the

predictive power of the seasonal average. Option prices therefore do not fully anticipate the

periodicity in realized variance.

The fifth regression in each panel provides an alternative way to make this point. These

regressions make log implied variance the dependent variable and regress it only on the two

realized variance measures. The timing of the dependent variable, lnV IXi(t − 1), means

that it represents the implied volatility immediately after the period over which the two

explanatory variables are computed but immediately prior to the period over which the

dependent variable in the earlier regressions was computed.

These regressions show that implied variances are also sensitive to quarterly periodicity

in realized variances, but the degree of that sensitivity is too low. In Panel A, for example,

actual realized log variance loads on the seasonal variance measure with a coefficient (0.1526)

that is almost twice as large as the log implied variance’s loading on the same variable

(0.0790). We show that these differences are significant in the final regressions in each panel,

which examine the difference between log realized and log implied variances.

Thus, there is periodicity in implied variances, as shown in Figure 2 (a), and it is at

least partially aligned with the periodicity in realized variance. But the magnitude of the

periodicity in implied variance is either too weak, or it is not aligned enough with the

periodicity in realized variance to eliminate seasonal momentum in option returns.

7 Conclusions

While the empirical evidence on the variance risk premium in index options is comprehensive

and convincing, the methods used in gathering that evidence are difficult to apply for indi-
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vidual equities, for which the number of traded options is often limited. Standard methods

for computing variance swap rates, which rely on a continuum of strikes, suffer from bias

and noise resulting from both interpolation and extrapolation of observed option prices. As

a result, the variance swap “return” does not actually represent the rate of return on any

portfolio of traded assets, and its validity in estimating variance risk premia is questionable.

In contrast, we propose to estimate variance risk premia from returns on observed option

contracts, held in a model-free portfolio that is constructed to replicate the hypothetical

return on a variance swap as closely as possible. The portfolio weights are computed using

Simpson’s rule, which we show in artificial and actual data to be more accurate than the

CBOE’s VIX formula or a simple rectangle rule. Specifically, relative to other methods,

Simpson’s rule requires fewer options to obtain an accurate measure of the variance swap

rate, and the resulting portfolio returns are more highly correlated with contemporaneous

realized variance.

Using this approach, we show that variance risk premia display seasonal momentum at

the quarterly frequency. This result is highly robust to the length of the formation period

and is apparent in a wide variety of subsamples formed on firm size, liquidity, and analyst

coverage. Seasonal momentum is robust to controls for other option predictors (including

momentum), is unrelated to the quarterly earnings cycle, and offers returns that are large

relative to their variance and tail risk.

Our work highlights some of the advantages of working with options data when attempt-

ing to explain the root cause of seasonal momentum. In the equity literature, the lack of

a high-frequency cash flow proxy makes it difficult to distinguish between explanations of

momentum based on biased expectations and those involving time-varying discount rates.

With our options methodology, however, the realized variance of future stock returns is ef-

fectively the “cash flow” of our constructed option portfolio. We find a strong periodicity in

realized variance that is not fully matched by similar periodicity in implied variance. That
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is, the option market appears to suffer from biased expectations by failing to adequately

anticipate seasonal volatility patterns into option prices. Understanding the reasons for this

failure and connecting them to seasonal patterns in stock markets (Heston and Sadka 2008,

Keloharju et al. 2016) represents an interesting area for future work.
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Figure 1.
This figure shows how discretization in strike prices affects VIX prices calculated using the
CBOE, rectangle, and Simpson’s rules. For each calculation, we assume a set of strike
prices separated by ∆, and each panel examines how the choice of ∆ affects the accuracy of
the VIX calculation. Given strike prices, we compute option prices using the Black-Scholes
model using a forward price (F ) of $1 and a volatility that is given in the title of each panel.
The panel titles also give the value of K0, which is the highest strike price below 1 for the
coarsest discretization in which ∆ = .25. For each of the three integration methods, the
figure shows the absolute error in implied volatility as a proportion of actual volatility.
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Figure 2.  

This paper shows cross-sectional regressions in which a variable is regressed on its own k'th lag, where k is the value on the 

horizontal axis.  In the upper panel, the regression variable is either the log of realized variance or the log of the VIX price, 

computed using Simpson's rule.  In the middle panel, the regression variable is the return on an approximated variance 

swap.  In the lower panel, the regression variable is the return on the VIX portfolio hedged using Black-Scholes.
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Figure 3.  

 Panel A: Formation period is 3,6,9,12

 Panel B: Formation period is 3,6,...,36

This figure shows the average returns on two different seasonal momentum 

strategies in the 12 months of the year.  Vertical bars denote 95% confidence 

intervals.
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Figure 4.
This figure shows five-year moving averages of the returns on various momentum strategies.
Panel A examines strategies formed on the basis of the past 12 months of returns, while
Panel B uses 36 months. In each panel, we show the strategy based on all lags, quarterly
lags only, and non-quarterly lags only.
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Table 1

Simulation study

Mean StdDev P10 Median P90

Panel A: Absolute percentage error in corridor VIX2

CBOE 12.79 13.00 2.00 10.07 26.76

Rectangle rule 4.70 9.07 0.39 2.84 11.21

Simpson's rule 1.43 7.81 0.09 0.80 2.47

Corrected Simpson's rule 1.24 7.74 0.08 0.65 2.03

Panel B: Simulation parameters

# of options 6.62 6.68 3.00 5.00 12.00

# of calls 3.06 3.09 1.00 2.00 6.00

# of puts 3.56 4.06 1.00 2.00 7.00

stock price 51.18 74.00 13.48 36.00 92.94

time to expiration 0.08 0.01 0.08 0.08 0.10

risk-free rate 0.02 0.02 0.00 0.02 0.06

volatility 0.54 0.27 0.26 0.47 0.89

skewness -0.50 0.68 -1.25 -0.46 0.24

kurtosis 3.84 3.50 1.81 3.02 6.21

In this table we report simulation results that measure the accuracy of corridor VIX2 measures computed using four 

different integration rules.  We simulate a panel of option prices that match the actual sample described in Section 3 

in terms of the numbers of options, strike prices, maturities, stock prices, and riskless rates.  We assume a time-

varying volatility for each stock that is the average of the implied volatilities of all options in each stock's VIX 

portfolio.  Risk neutral skewness and kurtosis also vary across stocks and time and are computed using the approach 

of Bakshi, Kapadia, and Madan (2003).  Following Aschakulporn & Zhang (2019), option prices are generated by Gram-

Charlier expansion.  We then compute model-free corridor implied variances using three different integration rules 

and compare them to true values, which are computed using a larger set of options with strike prices over a much 

finer grid.  Panel A of the table reports statistics on the percentage errors, while panel B describes the simulation 

parameters.  All statistics are from a sample that pools all stocks over all dates.
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Table 2: Convergence in VIX Prices
In this table we measure the effects of reducing the number of available strikes on the price of the VIX
portfolio. We begin with a sample of firms that have at least seven one-month out-of-the-money options,
including at least three calls and three puts, and compute the VIX price (V IX2

All) using each of the three
integration rules we consider. Ordering the options from lowest to highest strike price, we then discard all
options in even positions, leaving us with half or slightly more than half of the original number. We use this
subset to compute a different VIX price (V IX2

Half ) and examine the percentage absolute difference between

the two, 100 × |V IX2
Half−V IX2

All

V IX2
All

|. The table reports summary statistics of this value, where the sample is

pooled across all dates and firms. We also consider subsamples in which the firm has exactly 7, 11, or 15
OTM options. The number of observations is 34,088 when at least 7 options are included, 9,880 when exactly
7 are included, 5,359 when 11 are included, and 2,343 when 15 are included.

Mean StdDev P10 Median P90

Panel A: CBOE

At Least 7 Strikes 13.60 10.27 3.98 11.70 24.59
7 Strikes 21.76 11.95 12.55 19.51 32.40
11 Strikes 11.39 7.09 6.16 9.90 17.83
15 Strikes 7.61 4.42 3.83 6.53 12.57

Panel B: Rectangle

At Least 7 Strikes 5.82 5.32 0.73 4.40 12.80
7 Strikes 8.30 6.42 1.34 7.04 16.80
11 Strikes 5.23 4.41 0.77 4.34 10.56
15 Strikes 3.90 3.47 0.65 3.15 7.85

Panel C: Simpson

At Least 7 Strikes 3.36 3.27 0.55 2.54 6.87
7 Strikes 4.82 3.96 1.29 3.92 9.20
11 Strikes 3.00 2.71 0.67 2.37 5.86
15 Strikes 2.33 2.31 0.43 1.76 4.55
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Table 3: Option and Variance Swap Returns
In this table we report summary statistics on the rates of return on different option strategies, some exact
and some approximated. In Panel A to C, VIX portfolio weights are constructed using a different integration
rule. For each VIX portfolio, we examine unhedged returns, returns after hedging using Black-Scholes, and
returns after hedging using the model-free hedge ratio, both with and without a corridor adjustment. We
also examine the approximate returns on variance swaps and corridor variance swaps, both of which use
the same VIX price as the swap rate. Panel D reports returns on corridor variance swaps in which the
swap rate is approximated using a linear interpolation of implied volatilities. Returns are reported on a
monthly-percentage basis, and the number of observations is 221,157.

Mean StdDev P10 Median P90

Panel A: CBOE

VIX portfolio -5.78 165.45 -96.28 -55.73 130.71
VIX portfolio with Black-Scholes hedge -9.12 76.25 -61.93 -24.60 50.86
VIX portfolio with model-free hedge -8.53 135.83 -70.88 -22.12 70.53
VIX portfolio with model-free corridor hedge -8.48 82.33 -70.70 -23.05 64.33
Variance swap -7.01 155.53 -70.36 -33.75 60.32
Corridor variance swap -19.39 85.95 -71.39 -36.86 42.02

Panel B: Rectangle

VIX portfolio -8.65 188.57 -100.00 -67.24 137.73
VIX portfolio with Black-Scholes hedge -10.28 84.51 -68.87 -27.35 56.07
VIX portfolio with model-free hedge -11.60 152.78 -84.07 -28.76 80.58
VIX portfolio with model-free corridor hedge -11.57 96.06 -83.44 -29.49 74.16
Variance swap 2.62 176.52 -66.83 -26.67 75.63
Corridor variance swap -11.04 93.40 -68.01 -30.06 56.49

Panel C: Simpson’s

VIX portfolio -8.35 182.70 -98.77 -63.09 129.63
VIX portfolio with Black-Scholes hedge -10.22 84.14 -68.29 -27.33 55.85
VIX portfolio with model-free hedge -11.27 151.68 -69.52 -28.91 64.30
VIX portfolio with model-free corridor hedge -11.30 84.93 -68.29 -29.45 56.63
Variance swap 2.10 180.58 -66.79 -26.91 74.36
Corridor variance swap -11.51 92.50 -68.01 -30.30 55.19

Panel D: Implied volatility interpolation

Corridor variance swap -10.86 87.07 -68.29 -28.72 57.68
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Table 5

Univariate sorts of seasonal momentum

Mean

Low 2 3 4 High High - Low monthly # firms

-0.1990 -0.1594 -0.1291 -0.0980 -0.0815 0.1175 692.5

(-13.77) (-9.98) (-6.86) (-5.10) (-4.49) (13.06)

-0.2167 -0.1616 -0.1257 -0.0975 -0.0745 0.1422 666.0

(-12.99) (-9.48) (-6.82) (-4.73) (-3.99) (14.80)

-0.2084 -0.1667 -0.1221 -0.0990 -0.0724 0.1360 597.9

(-12.16) (-9.58) (-6.23) (-4.59) (-3.32) (12.23)

-0.1676 -0.1493 -0.1270 -0.1052 -0.0830 0.0846 650.1

(-9.35) (-7.66) (-6.81) (-5.37) (-4.47) (9.39)

-0.1781 -0.1481 -0.1204 -0.1034 -0.0859 0.0922 606.5

(-10.11) (-7.49) (-6.30) (-4.62) (-4.25) (9.33)

-0.2270 -0.1598 -0.1298 -0.0978 -0.0834 0.1436 543.2

(-12.86) (-10.20) (-7.46) (-5.19) (-4.52) (13.90)

-0.2086 -0.1515 -0.1259 -0.0958 -0.0903 0.1183 463.5

(-11.86) (-8.86) (-6.61) (-4.90) (-4.26) (9.35)

-0.1921 -0.1410 -0.1264 -0.0944 -0.1084 0.0836 595.6

(-15.04) (-9.78) (-7.91) (-5.24) (-5.76) (7.38)

-0.2174 -0.1403 -0.1086 -0.0697 -0.0799 0.1375 739.8

(-17.46) (-8.58) (-5.40) (-3.03) (-4.26) (9.96)

-0.1235 -0.1102 -0.1059 -0.1125 -0.1638 -0.0403 739.8

(-4.92) (-5.60) (-6.34) (-7.35) (-12.15) (-2.18)

-0.1603 -0.1158 -0.1221 -0.1177 -0.1000 0.0603 739.8

(-14.25) (-8.01) (-7.54) (-6.13) (-3.34) (2.53)

-0.1890 -0.1279 -0.1095 -0.0925 -0.0972 0.0918 739.8

(-15.01) (-8.00) (-5.92) (-4.17) (-4.85) (7.34)

-0.1642 -0.1024 -0.0999 -0.1036 -0.1460 0.0182 739.8

(-11.10) (-5.21) (-4.97) (-5.32) (-10.14) (2.61)

Idiosyncratic vol

12,24,36

2,3,…,12

12

3,6,9,12

IV smile slope

This table reports means and t-statistics from univariate quintile sorts. Dynamically hedged VIX returns with model-free corridor hedge 

ratios are used. T-statistics, in parentheses, are computed using Newey-West standard errors with three lags. All portfolios are equally 

weighted, and returns are in excess of the risk-free rate.  Observations are included if at least two thirds of all months in the formation 

period are non-missing.  The sample includes common shares (shares with share codes of 10 and 11) and spans between January 1996 to 

November 2020.

3,6,...,36

Formation period

3

Market cap

IV term spread

Panel A: Seasonal momentum

Panel B: Standard Momentum

Panel C: Other predictors

2,3,…,36

Short-term momentum

HV - IV
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Table 6

Risk and return for factor portfolios

Mean 0.1422 0.1360 0.1375 0.0403 0.0603 0.0918 0.0182 0.1436 0.1709 0.1232

(14.80) (12.23) (9.96) (2.18) (2.53) (7.34) (2.61) (13.90) (1.74) (7.20)

Standard deviation 0.149 0.184 0.188 0.307 0.400 0.195 0.112 0.155 1.695 0.280

Sharpe ratio 0.956 0.739 0.732 0.132 0.151 0.471 0.163 0.927 0.101 0.439

Skewness 1.024 2.363 2.621 8.731 9.488 4.794 0.103 0.038 -13.857 -4.267

Kurtosis 7.80 20.45 19.60 116.01 128.10 46.60 1.64 1.06 217.80 34.32

Maximum drawdown 0.373 0.406 0.378 0.982 0.996 0.525 0.861 0.611 > 1 > 1

This table reports risk and return measures for high-minus-low portfolios based on seasonal momentum and other characteristics. All values are in monthly decimal terms.  Means and 

t-statistics for the long/short factors are identical to those in Table 1 except, in some cases, for the sign.  T-statistics, in parentheses, are computed using Newey-West standard errors 

with three lags. Sample includes common shares (shares with share codes of 10 and 11) and spans the period from January 1996 to November 2020. 

IV smile slope

Momentum (2-

12) Short SPX VIX

Short EW 

stock VIXHV - IV

Idiosyncratic 

vol

Seasonal

momentum 

(3,6,9,12)

Seasonal 

momentum 

(3,6,...,36) Market cap IV term spread
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Table 7

High-minus low spreads for seasonal and non-seasonal momentum

Lags 1 to 12 Lags 13 to 24 Lags 25 to 36 Lags 37 to 48 Lags 49 to 60

0.1392 0.0931 0.0648 0.0593 0.0526

(13.64) (6.77) (5.59) (4.57) (4.45)

0.1422 0.1005 0.0740 0.0669 0.0579

(14.80) (8.38) (7.50) (5.42) (4.44)

0.1179 0.0702 0.0447 0.0365 0.0476

(8.99) (5.27) (3.71) (2.72) (3.81)

0.0846 0.0733 0.0473 0.0553 0.0503

(9.39) (6.55) (6.53) (7.05) (4.42)

0.1438 0.0855 0.0688 0.0466 0.0472

(11.88) (7.01) (5.63) (3.61) (3.69)

Quarterly non-annual (3,6,9,15,…) 0.1366 0.1005 0.0800 0.0613 0.0586

(14.55) (8.38) (7.34) (4.69) (3.77)

This table reports average differences between the high and low portfolios formed on the basis of average lagged returns over various 

formation periods.  In all cases, the returns analyzed are for dynamically hedged VIX portfolios, and the holding period is one month.  

Values in the table differ only as a result of the formation period, which can be determined by taking the intersection of the lags in the 

row and column headers.  For example, the value in the row labeled "Non-quarterly (1,2,4,5,...)" and the column labeled "Lags 25 to 36" 

is constructed based a formation period that includes all non-quarterly lags in the third year prior to the holding period, namely lags 25, 

26, 28, 29, 31, 32, 34, and 35.  The sample includes common equities (share codes of 10 and 11) and spans the sample from January 1996 

and November 2020.

Annual (12, 24, …)

Non-annual (1,…,11,13,…)

Formation months

All

Quarterly (3, 6, …)

Non-quarterly (1,2,4,5, …)
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Table 8

Seasonal versus non-seasonal momentum

Intercept

Seasonal 

momentum 

(3,6,9,12)

Seasonal

momentun

(12)

Momentum

(2,3,…,12)  Avg. CS R-square

-0.1014 0.0850 0.0051

(-5.48) (13.23)

-0.1096 0.0400 0.0045

(-5.97) (9.14)

-0.0978 0.1146 0.0057

(-5.39) (10.99)

-0.0959 0.0800 0.0162 0.0085

(-5.16) (9.77) (3.23)

-0.0965 0.0534 0.0677 0.0095

(-5.39) (6.31) (5.14)

-0.0938 0.0257 0.0964 0.0094

(-5.12) (4.54) (8.36)

-0.0926 0.0503 0.0156 0.0605 0.0128

(-5.13) (5.25) (2.65) (4.43)

Intercept

Seasonal

momentum

(3,6,...,36)

Seasonal

momentum

(12,24,36)

Momentum

(2,3,…,36)  Avg. CS R-square

-0.0813 0.1561 0.0069

(-3.67) (12.24)

-0.1020 0.0616 0.0047

(-4.92) (8.24)

-0.0833 0.1734 0.0062

(-3.83) (8.74)

-0.0758 0.1635 0.0035 0.0106

(-3.43) (10.79) (0.44)

-0.0796 0.1171 0.0609 0.0110

(-3.65) (8.55) (2.46)

-0.0779 0.0300 0.1551 0.0111

(-3.63) (3.86) (7.09)

-0.0741 0.1275 0.0019 0.0621 0.0156

(-3.44) (8.09) (0.22) (2.51)

Intercept

Seasonal

momentum

(3,6,...,36)

Seasonal

momentum

(12,24,36)

Momentum

(2,3,…,12)  Avg. CS R-square

-0.0840 0.1283 0.0427 0.0112

(-4.10) (9.65) (3.49)

-0.0910 0.0425 0.0876 0.0101

(-4.61) (5.52) (7.65)

-0.0782 0.1366 0.0025 0.0439 0.0153

(-3.85) (8.61) (0.31) (3.54)

Panel A: Formation periods in last 12 months

Panel B: Formation periods in last 36 months

Panel C: Formation periods in last 36 (seasonal momentum) or 12 (momentum) months

This table reports Fama-MacBeth regression results in which model-free VIX portfolio returns are regressed on measures of 

seasonal and non-seasonal momentum.  The sample includes common shares (shares with share codes of 10 and 11) and spans 

the period from January 1996 to November 2020. 
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Table 9

Seasonal Seasonal
momentum momentum Momentum Momentum

Intercept {3, 6, 9, 12} {3, 6, ..., 36} {2,3,…,12} {2,3,…,36}

-0.0550 0.0842 0.2050 -1.8591 -0.0002 0.1920 0.1484 0.0324

(-2.47) (7.71) (4.80) (-6.03) (-1.23) (4.12) (2.98)

-0.0534 0.0498 0.0413 0.2052 -1.8877 -0.0001 0.1972 0.1421 0.0362

(-2.42) (6.26) (3.03) (4.71) (-6.02) (-0.40) (4.17) (2.80)

-0.0448 0.1172 0.0310 0.1443 -1.5576 -0.0002 0.3267 0.1327 0.0413

(-1.83) (9.74) (2.32) (2.74) (-4.20) (-1.40) (5.49) (2.24)

-0.0402 0.1447 0.1559 -1.7443 -0.0002 0.3161 0.1421 0.0370

(-1.59) (7.73) (3.28) (-4.86) (-1.11) (5.24) (2.51)

-0.0389 0.0443 0.1079 0.1343 -1.7547 -0.0002 0.3486 0.1432 0.0416

(-1.59) (5.09) (5.25) (2.70) (-4.84) (-1.12) (5.83) (2.42)

-0.0367 0.1169 0.0349 0.1424 -1.6462 -0.0002 0.3427 0.1425 0.0414

(-1.46) (9.32) (1.57) (3.01) (-4.56) (-1.00) (5.65) (2.58)

IV smile

slope

Avg. CS R-

squared

Controlling for other option predictors

HV - IV

Idiosyncratic 

volatility

Market 

capitalization IV term spread

This table reports Fama-MacBeth regression results in which model-free VIX portfolio returns are regressed on measures of seasonal momentum and other option predictors.  The 

sample includes common shares (shares with share codes of 10 and 11) and spans the period from January 1996 to November 2020. 
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Table 10

Mean

Low 2 3 4 High High - Low monthly # firms

-0.1212 -0.0725 -0.0448 -0.0195 -0.0082 0.1083 186.4

(-4.78) (-3.29) (-2.08) (-0.91) (-0.38) (3.88)

-0.1126 -0.0721 -0.0633 -0.0380 0.0046 0.1137 156.6

(-4.66) (-2.99) (-2.79) (-1.84) (0.16) (4.41)

-0.2469 -0.2059 -0.1463 -0.1182 -0.1027 0.1442 382.8

(-13.61) (-10.74) (-7.24) (-4.77) (-4.68) (10.30)

-0.2527 -0.1986 -0.1445 -0.1104 -0.0932 0.1571 333.8

(-12.94) (-10.50) (-6.19) (-4.34) (-3.58) (9.55)

-0.2365 -0.1868 -0.1296 -0.1094 -0.0937 0.1428 256.7

(-13.05) (-9.76) (-6.23) (-4.85) (-4.48) (10.78)

-0.2310 -0.1776 -0.1369 -0.1148 -0.0881 0.1429 227.6

(-11.75) (-9.15) (-6.24) (-4.99) (-3.51) (7.45)

-0.1986 -0.1553 -0.1163 -0.0918 -0.0666 0.1320 409.3

(-11.16) (-9.61) (-6.34) (-4.65) (-3.65) (11.40)

-0.1948 -0.1552 -0.1156 -0.0880 -0.0667 0.1281 370.3

(-10.66) (-8.92) (-5.93) (-4.10) (-3.24) (10.28)

3,6,9,12

3,6,...,36

Panel A: Earning months during formation and holding periods

Panel B: Non-earning months during formation and holding periods

3,6,9,12

3,6,...,36

3,6,9,12

3,6,...,36

Panel C: Options expiring within quarterly cycle

Panel D: Options expiring outside of quarterly cycle

This table reports the results of sorting on seasonal momentum in subsets of the full sample.  Panel A examines the 

subsample in which all months in the formation and holding periods contain earnings announcements.   Panel B uses the 

subsample where formation and holding periods include no earnings announcements.  Panel C examines the subsample of 

firms whose options are expiring in a month that is in that firm's quaterly expiration cycle.  Panel D uses the subsample of 

firms whose options are not part of its quarterly expiration cycle.

Formation period

Controlling for other quarterly cycles

3,6,9,12

3,6,...,36
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Table 11

Limits to arbitrage

Firm Stock Option Analyst Firm Stock Option Analyst

size illiquidity illiquidity coverage size illiquidity illiquidity coverage

Low 0.1234 0.0887 0.0662 0.1335 0.1152 0.0888 0.0760 0.1103

(9.82) (11.82) (8.30) (11.23) (7.89) (12.42) (9.16) (7.53)

Medium 0.1185 0.1023 0.0907 0.1174 0.1065 0.0948 0.0850 0.1030

(10.58) (9.72) (9.18) (13.27) (9.39) (9.21) (8.03) (10.38)

High 0.0904 0.1126 0.1175 0.0789 0.0866 0.1168 0.0995 0.0861

(12.19) (8.16) (11.05) (9.76) (10.06) (7.40) (7.47) (10.60)

High - Low -0.0330 0.0239 0.0513 -0.0546 -0.0286 0.0280 0.0235 -0.0242

(-2.22) (1.53) (3.97) (-3.66) (-1.71) (1.75) (1.48) (-1.58)

This table reports return means and t-statistics from sequential double sorts on straddles. Every third Friday, we sort straddles into 3 portfolios based on a conditioning 

variable shown in the column header and then, within each tercile, sort straddles into 3 portfolios based on past average returns over some formation period. Within 

each tercile of the conditioning variable, we then compute equal-weighted portfolio returns and take long and short positions in the top and bottom terciles. Numbers 

reported are the resulting high-minus-low return spreads within each tercile of the conditioning variable. T-statistics, in parentheses, are computed using Newey-West 

standard errors with three lags. We consider four conditioning variables.  The first, firm size, is the stock’s most recent equity capitalization.  Stock illiquidity is proxied 

by the average Amihud (2002) measure over the most recent 12 months.  Option illiquidity is the average the percentage bid-ask spread of the options in each VIX 

portfolio, averaged over the past 12 months.  Analyst coverage is the number of analysts covering the stock, updated monthly.  The sample includes common equities 

(share codes of 10 and 11) and spans the sample from January 1996 and November 2020. 

High-low spreads based on lags 3, 6, 9, & 12 High-low spreads based on lags 3, 6, …, 36
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Table 12

Seasonal patterns in realized vs. implied variances

Intercept

Periodic average of

ln RCV(t-3), ln RCV(t-6), 

ln RCV(t-9), ln RCV(t-12)

All-month average of

ln RCV(t-1), ln RCV(t-2), 

…, ln RCV(t-12) ln VIX(t-1) Avg CS R2

-0.5015 0.8957 0.5005

(-10.94) (83.32)

-0.5096 0.1526 0.7430 0.5059

(-11.06) (9.15) (42.52)

-0.3792 0.2726 0.7047 0.5939

(-12.71) (23.90) (61.38)

-0.3786 0.0906 0.1878 0.6988 0.5961

(-12.63) (10.03) (13.64) (62.49)

-0.2015 0.0790 0.8014 0.7311

(-5.39) (5.08) (60.28)

-0.3081 0.0736 -0.0584 0.0215

(-10.81) (8.29) (-5.59)

Intercept

Periodic average of

ln RCV(t-3), ln RCV(t-6), 

…, ln RCV(t-36)

All-month average of

ln RCV(t-1), ln RCV(t-2), 

…, ln RCV(t-36) ln VIX(t-1) Avg CS R2

-0.5434 0.8919 0.4267

(-9.75) (62.84)

-0.5551 0.3258 0.5656 0.4354

(-9.89) (13.81) (22.44)

-0.3719 0.1980 0.7894 0.5765

(-10.26) (15.62) (65.56)

-0.3686 0.1602 0.0435 0.7832 0.5792

(-10.12) (11.94) (2.79) (65.27)

-0.2561 0.1992 0.6761 0.6447

(-6.18) (8.45) (32.82)

-0.2990 0.1266 -0.1105 0.0229

(-8.52) (9.03) (-7.13)
ln RCV(t) - ln VIX(t-1)

Each panel reports regressions in which the variable being forecast is the log of the realized corridor variance (RCV) during month t, the log of the implied variance at the end of month 

t-1, or the difference between the two.  Regressors include averages of lagged log RCVs over all lags or over periodic (multiples of three) lags, as well as lagged log implied variances.  

Panels A and B differ with respect to the maximum lag length used for both the periodic and all-month averages of realized variance.  The sample includes common shares (shares with 

share codes of 10 and 11) and spans between January 1996 to November 2020.  

ln RCV(t) - ln VIX(t-1)

ln VIX(t-1)

Panel A: Longest lag is 12 months

Panel B: Longest lag is 36 months

ln RCV(t)

ln RCV(t)

ln VIX(t-1)
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