
s

K8S for NFV
Leveraging ONAP, OPNFV, CNCF

Contacts: ONAP Edge automation working group
Presentation contacts: Srinivasa.r.addepalli@intel.com, Ritu.sood@intel.com

mailto:Srinivasa.r.addepalli@intel.com
mailto:Ritu.sood@intel.com

Site
(With K8S for both

VMs and Containers)

ONAP – Support for K8S based Sites

ONAP

Multi Cloud Service

Site
(With Openstack VIM)

AWS
EKS

SDNC
(Fabric/WAN

Control)

• Current support as in R2: Openstack
based remote Clouds, Support multiple
Openstack variations – Windriver
Titanium, VMWare VIO, Native Newton,
Ocata. Only VM based VNFs.

• Goals for R3 and R4
• Support containerized workloads
• Support containerized VNFs
• Support both VMs and containers

on same compute nodes. (Bare-
metal deployment)

• Support for multiple virtual
networks

• Support for dynamic creation of
Virtual networks

• Support public cloud CaaS such as
AWS EKS, GCP GKE and Azure AKS
(Only containers, not VMs)

GCP
GKE

Azure
AKS

ONAP – K8S Support

1. Uniform API across cloud technologies (HEAT, K8S, Azure
etc..)

2. K8S Multi-Cloud Service plugin
• Support for deployment and services.
• K8S yaml artifacts
• Networking – OVN, flannel and Multus (Create/Delete VNs,

Distributed Router, Gateways, SNAT in Gateway)

3. Kubernetes Deployment
• Installation of software & configuration to make K8S

based sites.
• Additional of virtlet, Multus, OVN and flannel.

4. K8S-OVN4NFV (OPNFV project, visualized as part of ONAP
work)
• Support for multiple virtual networks
• Support for dynamic creation/deletion of virtual

networks
5. Support for Control/Management/Data Plane workloads

a. Flannel or any for default Kubernetes networking
b. L7 Application connectivity : ISTIO with Envoy for E-W,

Ambassador (as L7GW) with MetalLB with BGP for N-S
c. OVN for data plane networking

SO/VFC

Multi Cloud Service

Openstack
Plugins – VIO,

Titanium, OS ocata &
newton

API (Metadata)

K8S Plugin Service

OOFSDC

SDC Client

K8S Master

OVN N Controller
Multus

Minion Docker, virtlet, OVN S Controller, O, Multus
CNI, OVN CNI, SRIOV CNI, ISTIO, Prometheus

VFW VM VFW Hybrid EdgeX

K8SOVN4NFV

ONAP

Edge/Site

K8S Plugin Service as independent manager – Modular design

K8S Plugin Service

Onboard API Profile API
Deployment

API
Config API

Edge
registration

API

Register Edges Onboard
resource bundle
(Helm Bundle)

Create Day0
configurations for
each RB

Instantiate
RB with
profile and
edge site

Config RB

K8S based Cloud region support- Enhancements (R5+)

K8S Plugin Service

Onboard API Profile API
Deployment

API
Config API

Edge
registration

API

Edge Label
API

App definition
management

API

Multi-Cluster
Scheduler

API

Match Engine

API

Inter App
metadata
exchange

API

Edge operator (to allow
watcher to get

notificatins)

K8S based Cloud regions support – Enhance with Operators (R5++)

K8S Plugin Service

Onboard API Profile API
Deployment

API
Config API

Edge
registration

API

Edge
registration

API

Edge Labelling

App definition
management

API

Multi-Cluster
Scheduler

API

Match Engine

API

Edge registration Operator
App definition

operator
Scheduler
Operator

Match policy
operator

Profile
Operator

Config
Operator

Inter App
metadata
exchange

API

R4 Scenarios – EdgeX deployment

ONAP

Multi Cloud Service
SDNC

(Fabric Control)

Compute Servers – Hardware (CPU/Memory/SRIOV-NIC/FPGA/GPU) etc…

NFVI – VMM & Docker

Flannel Default Network

Cmd

Site (edge/cloud)

K8S Master
Network

ControllerConsul Consul Data
Virtual
Device

export Logging

Metadata Mongo Notification Rules Engine Scheduler

K8S Plugin

1

1. One time: Prepare K8S based site using
KRD (if it does not exist)

2. One time: Register the K8S Site in ONAP
by adding Kubeconfig file in ONAP (if the
site is not added earilier)

3. EdgeX onboarding: EdgeX deployment
and service helm charts in Multi-Cloud

4. Instantiate EdgeX (by calling Multi-Cloud
Service API) via postman or via script
(Multiple instances in various edge sites)

5. Check if all EdgeX containers are
successful brought up on the site (using
K8S utilities on the site)

6. Basic EdgeX testing to ensure that
functionality also works
• Use consul dashboard to check the

services and their status
Repeat step 4 to 6 by bringing second
instance of EdgeX on a different namespace.
Also, work with Edgex team to automate
deployment verification

2

3

4

5 6

vFirewall scenario (as VMs)

ONAP

Multi Cloud Service
SDNC

(Fabric Control)

Compute Servers – Hardware (CPU/Memory/SRIOV-NIC/FPGA/GPU) etc…

NFVI – VMM & Docker

Flannel Default network

Site (edge/cloud)

K8S Master
Network

Controller

K8S Plugin

1

1. One time: Prepare K8S based site using KRD
(if it does not exist)

2. One time: Register the K8S Site in ONAP by
adding Kubeconfig file in ONAP (if the site
is not added earilier)

3. vFirewall onboarding: Create deployment
and service yaml files and put them in
location expected by K8S plugin

4. Instantiate vFirewall (by calling Multi-Cloud
Service API) via postman or via script

5. Check if all firewall containers are
successful brought up on the site (using
tools) and also ensure that three additional
virtual networks are created. Also ensure
that firewall belongs in all data networks.
Ensure that generator and sink belong to
different data networks.

6. Basic firewall testing to ensure that
functionality also works
• Check the sink dashboard to ensure

that right packet streams are
received by sink.

2

3

4

5 6

OAM network

Data network - Protected Data network - Unprotected

Firewall as
VM

Traffic
Generator VM

Traffic Sink as
VM

vFirewall scenario (as VMs and containers – Hybrid)

ONAP

Multi Cloud Service
SDNC

(Fabric Control)

Compute Servers – Hardware (CPU/Memory/SRIOV-NIC/FPGA/GPU) etc…

NFVI – VMM & Docker

Flannel Default network

Site (edge/cloud)

K8S Master
Network

Controller

K8S Plugin

1

1. One time: Prepare K8S based site using KRD
(if it does not exist)

2. One time: Register the K8S Site in ONAP by
adding Kubeconfig file in ONAP (if the site
is not added earilier)

3. vFirewall onboarding: Create deployment
and service yaml file and put them in
location expected by K8S plugin

4. Instantiate vFirewall (by calling Multi-Cloud
Service API) via postman or via script

5. Check if firewall is successfully brought up
on the site (using tools) and also ensure
that three additional virtual networks are
created. Also ensure that firewall belongs
in all data networks. Ensure that generator
and sink belong to different data networks.

6. Basic firewall testing to ensure that
functionality also works
• Check the sink dashboard to ensure

that right packet streams are
received by sink.

2

3

4

5 6

OAM network

Data network - Protected Data network - Unprotected

Firewall as
VM

Traffic
Generator VM

Traffic Sink as
container

Provider & Multi-App Support

Next Generation Managed SDWAN

CoSP / Internet

Service Orchestrator

Subscriber
Operator

Subscriber Edge1 Subscriber Edge2 (Dynamic)

Operator slice

SDWAN
VNF

Security
VNF

WAN Opt
CNF

Operator slice

SDWAN
VNF

Security
VNF

WAN Opt
CNF

OSS/BSS

ISP B ISP Y

ISP XISP A

Subscriber slice
Media

Analytics
AR/VR

Services

Functions

Subscriber slice
Media

Analytics
AR/VR

Services

Functions

Cloud

Tunnel

Media training

Functions

Subscriber slice

• Intelligent placement

• Various WL Deployment types
(VMs, Containers, Functions)

• Multi-tenancy (slices with one VIM)

• Performance with constrained
resources

• Lack of physical security

CORP network

CORP network

Context: Provider Networks and Kubernetes

• Provider networks are physical and/or VLAN networks that are part of data center.
These are supposed to exist (or created) even before VIMs are used to create
resources (such as VNFs, CNFs, dynamic networks etc…)

• In typical Kubernetes deployments, there is a never a need to place workloads on
provider networks as many use cases and associated applications are endpoints.

• In case of Cloud native NFV:
- Network functions are placed in the line of traffic – Security (firewall, IPS, WAF), Optimization

(WAN Optimization, Transparent Caching), Probes & collectors and connectivity (WAN routers,
SDWAN, UPF, etc…)

- Network functions provide IP addresses and other network configuration (DHCP etc…)

• Provider network support is well taken care in Openstack, but not in Kubernetes

• Intel with guidance from few service providers is adding support for provider
networks in Kubernetes based deployment (Starting with OVN as CNI)

Test scenario – to comprehend multiple deployment variations

TM1

TM2
(External
Router)

Internet

MS2
(Dynamic

IP)

MS1
(Dynamic

IP)

Firewall
WAN Opt

CPE/
SDWAN

10.1.5.0/24
(Provider network)

10.1.10.0/24
(Provider network)

DHCP
Server

External existing entities VNF/CNFs
Default route: 10.1.5.1

10.1.5.1

10.1.20.0/24
(Dynamic network)

10.1.21.0/24
(Dynamic network)

10.1.20.2

10.1.20.3 10.1.21.2

10.1.21.3 10.1.10.2

10.1.10.1

Routes:
Default via 10.1.20.3

Routes:
Default via 10.1.21.3
10.1.5.0/24 via 10.1.20.2

Routes:
Default via 10.1.10.1
10.1.5.0/24 via 10.1.21.2
10.1.20.0/24 via 10.1.21.2

Routes:
Default via WANIP
10.1.5.0/24 via 10.1.10.2
10.1.20.0/24 via 10.1.10.2
10.1.21.0/24 via 10.1.10.2

Deployment Variations related requirements

• Number of provider networks are not same across deployments

• Provider network IP addressing is different from deployment to deployment

• Some provider networks have DHCP Servers that provide IP addresses.

• Some customer micro services are expected to be part of one of provider networks

• Number of physical ports on the K8S cluster nodes can be less than the provider
networks. Number of physical ports on K8S cluster nodes can vary across deployments.

• All K8S nodes might not be connected to all physical provider networks.

• Some deployments may require link aggregation across multiple ports for high availability
and traffic scaling.

• VNFs/CNFs deployed are expected to provide security/network services.

• Each deployment might require multiple tiers (in previous example, there are three tiers –
firewall, Cache and SDWAN. But different deployments might require more tiers or less
tiers.

• Tiers can be static or even dynamic (adding of new tiers dynamically will be a
requirement in future)

TM1

Use case scenario 1

K8S Cluster

K8S Master

Minion1 Minion2 Minion3

ProviderX switch

VLAN-X
VLAN-Y

TM2

VLAN-X

VLAN-Y

ProviderY switch

Overlay network1

Workload plane

Overlay network 2

CPE/ SDWAN
MS1

MS2

Firewall

DHCP
Server
VLAN-Y

Web Cache

All VNF/CNF are simulated using Ubuntu images as routers – They don’t perform actual
functionality of firewall, cache or SDWAN

TM1

Use case scenario 2

K8S Cluster

Minion and Master

ProviderX switch

VLAN-X

TM2

VLAN-X

VLAN-Y

ProviderY switch

Overlay network1

Workload plane

Overlay network 2

CPE/ SDWAN
(VM)

MS1

MS2

Firewall (VM)

DHCP
Server
VLAN-Y

Web Cache
(Container)

VLAN-Y

Provider networks – Dublin (R4) Scope

• All provider networks related configuration is done at the time of K8S deployment
or right after K8S deployment before any VNF/CNFs are instantiated.
- Ansible Framework used to run configuration script(s) on different cluster nodes based on the

role of the node.
• This script(s) is expected to be changed per deployment.

- For Nodes with Provider network role the script will be responsible for
• Creation of VLANs on various physical interfaces
• Creation of link aggregation interfaces
• Configuring OVN provider network support

• VNF/CNF tiers
- All networks that constitute a chain to be created together.
- All VNFs/CNFs that constitute a chain to be instantiated together with static IP addresses and

static routes.

• Validation to ensure dynamic networks created don’t conflict with provider
networks with respect to IP addresses

Provider networks – Roadmap (R5 and beyond)

• Provider network – Declarative configuration

• Dynamic Route operator
- To allow dynamic insertion of tiers and services.

- Implementation suggestions:
• No expectation that there is NET_ADMIN privilege for VNFs.

• Daemon set to create routes in various network namespaces on behalf of VNFs.

• Fix any issues related to learn routes by virtlet based VMs.

TM1

Use case scenario 1 - Dynamic Route configuration(DRC) support

K8S Master

Minion1 Minion2 Minion3

ProviderX switch

VLAN-X
VLAN-Y

TM2

VLAN-X

VLAN-Y

ProviderY switch

Overlay network1

Workload plane

Overlay network 2

CPE/ SDWAN
MS1

MS2

Firewall

DHCP
Server
VLAN-Y

Web Cache

All VNF/CNF are simulated using Ubuntu images as routers – They don’t perform actual
functionality of firewall, cache or SDWAN

DRC
Controller

DRC Agent
DRC

AgentDRC Agent

Insert Routes in VF

DRC Controller

TCP/IP
stack

TCP
stack

TCP
stack

Other related roadmap items

• OVN operator
- Avoid OVN client library in K8S plugin of ONAP.

- Ability to create OVN resources via K8S operator facilities

• Integration of digital rebar (or Ironic) for bare-metal provisioning.

• Improve the performance of KRD

• Separate image creation of various packages from deployment in KRD.

s

Cloud Native NFV Stack – Service Function Chaining (WIP in
the community)

Service Functions – Scenario (Within a K8S cluster) –
Immediate requirement

Application Micro Services –
Residant1

Retail AR/VR CDN

Ingress Proxy
Service

(Ambassador/
Gloo)

Ingress Proxy
Service

(Ambassador/
Gloo)

Internal
Server

Internal
Server

Internal
Clients

SLBSLB HA (MetalLB)

FW IPS DLP
SDWAN

SDWAN

Hardware (Multiple Nodes)

FW HA IPS HA
DLP
HA

HA –
Active
&
Backup

Application
Micro Services –

Residant2
MS

Service Functions – Scenario (Within a K8S cluster)

Application Micro Services

Retail AR/VR CDN

Ingress Proxy
Service

(Ambassador/
Gloo)

Ingress Proxy
Service

(Ambassador/
Gloo)

Internal
Server

Internal
Server

Internal
Clients

SLBSLB HA

FW

FW

IPS

IPS

IPS

DLP

DLP

DLP

SLB
SLB SLB

SLB
SLB
SLB SDWAN

SDWAN

Challenges:
- Many SLB

instances
- Service

insertion and
deletion may
disrupt the
connectivity

- SLB can
become a
bottleneck

Opportunities:
- Distributed

SFC balancer.
- HW

Accelerated.

Hardware (Multiple Nodes)

Service Functions – Intended Scenario (Within a K8S cluster)

Application Micro Services

Retail AR/VR CDN

Ingress Proxy
Service

(Ambassador/
Gloo)

Ingress Proxy
Service

(Ambassador/
Gloo)

Internal
Server

Internal
Server

Internal
Clients

FW

FW

IPS

IPS

IPS

DLP

DLP

DLP

SDWAN
SDWAN

Distributed SFC Load Balancer & Dispatcher

Hardware (Multiple Nodes)

SFC Controller

No changes to
NFs
configuration
upon insertion
or scale-out

NFs should not
know about SFC
at all

Normal NFs. No
special code
because of SFC

Service Functions – Hardware Accelerated(Within a K8S cluster)

Application Micro Services

Retail AR/VR CDN

Ingress Proxy
Service

(Ambassador/
Gloo)

Ingress Proxy
Service

(Ambassador/
Gloo)

Internal
Server

Internal
Server

Internal
Clients

FW

FW

IPS

IPS

IPS

DLP

DLP

DLP

SDWAN
SDWAN

Hardware (Multiple Nodes)

SmartNIC with SFC LB & Dispatcher

Crypto
Accelerator

TEE

SFC Controller

Edge
resources
precious.
Use all the
cores for
actual
functions

Accelerate
SFC with
SmartnIC
Accelerate
Envoy with
Crypto Accel

GPU

Service Functions – Multiple K8S Clusters

Application Micro Services

Retail AR/VR CDN

Ingress Proxy Service
(Ambassador/

Gloo)

Ingress Proxy
Service

(Ambassador/
Gloo)

Internal
Server

Internal
Server

Internal
Clients

FW

FW

SDWAN
SDWAN

Hardware (Multiple Nodes)

SmartNIC with SFC LB & Dispatcher

Crypto AcceleratorTEE

SFC
Controller

GPU

Mid
Haul

Hardware (Multiple Nodes)

SmartNIC with SFC LB & Dispatcher

Crypto Accelerator

IPS

IPS

IPS

DLP

DLP

DLPR
o

u
te

r

R
o

u
ter

SFC
Controller

Customer Edge Provider Edge/Cloud

Global SFC controller

SFC requirements

• Multiple Service function chains

• Each service function to have multiple functions in sequence.

• SFs can be stateful or stateless

• Dynamic insertion of SFs without impacting existing flows.

• L3 SFs (L2SFs good to have)

• No changes to SF configuration when new SFs are introduced or
when existing SFs scale-out or scale-in

• Chain to extend multiple K8S clusters

• Chain to be accelerated (No additional cores)

• Working with existing CNIs (OVN to start with)

s

