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ANNOUNCEMENTS
• Next Thursday (10/12): Colab 1 due



¡ Intuition: Map nodes to 𝑑-dimensional 
embeddings such that similar nodes in the 
graph are embedded close together 

3

f (    ) =
Input graph 2D node embeddings

How to learn mapping function 𝒇?
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Goal:

Need to define!

Input network d-dimensional 
embedding space

similarity 𝑢, 𝑣 	≈ 	 𝐳!"𝐳#
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¡ Encoder: Maps each node to a low-dimensional 
vector

¡ Similarity function: Specifies how the 
relationships in vector space map to the 
relationships in the original network

5

Similarity of 𝑢 and 𝑣 in 
the original network

dot product between node 
embeddings

Decoder

ENC 𝑣 = 𝐳!

similarity 𝑢, 𝑣 	≈ 	 𝐳!"𝐳#

node in the input graph

d-dimensional 
embedding
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Simplest encoding approach: Encoder is just an 
embedding-lookup

6

Dimension/size 
of embeddings

one column per node 

embedding 
matrix

embedding vector for a 
specific node

𝐙 =
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¡ Limitations of shallow embedding methods:
§ 𝑶(|𝑽|𝒅) parameters are needed: 

§ No sharing of parameters between nodes
§ Every node has its own unique embedding  

§ Inherently “transductive”: 
§ Cannot generate embeddings for nodes that are not seen 

during training

§ Do not incorporate node features:
§ Nodes in many graphs have features that we can and 

should leverage
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¡ Today: We will now discuss deep learnig
methods based on graph neural networks 
(GNNs):

¡ Note: All these deep encoders can be 
combined with node similarity functions 
defined in the Lecture 3.

8

multiple layers of 
non-linear transformations 
based on graph structure

ENC 𝑣 =
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9

…

Output: Node embeddings. 
Also, we can embed subgraphs, 
and graphs
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Tasks we will be able to solve:
¡ Node classification
§ Predict the type of a given node

¡ Link prediction
§ Predict whether two nodes are linked

¡ Community detection
§ Identify densely linked clusters of nodes

¡ Network similarity
§ How similar are two (sub)networks

1010/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11

Images

Text/Speech

Modern deep learning toolbox is designed 
for simple sequences & grids



But networks are far more complex!
§ Arbitrary size and complex topological structure (i.e., 

no spatial locality like grids)

§ No fixed node ordering or reference point
§ Often dynamic and have multimodal features

12

vs.

Networks Images

Text
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1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs
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¡ Loss function:
min
!
ℒ(𝒚, 𝑓! 𝒙 )

¡ 𝑓 can be a simple linear layer, an MLP, or other 
neural networks (e.g., a GNN later)

¡ Sample a minibatch of input 𝒙
¡ Forward propagation: Compute ℒ given 𝒙
¡ Back-propagation: Obtain gradient ∇!ℒ using a 

chain rule.

¡ Use stochastic gradient descent (SGD) to 
optimize ℒ for Θ over many iterations.
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¡ Local network neighborhoods:
§ Describe aggregation strategies
§ Define computation graphs

¡ Stacking multiple layers:
§ Describe the model, parameters, training
§ How to fit the model?
§ Simple example for unsupervised and 

supervised training 
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¡ Assume we have a graph 𝑮:
§ 𝑉 is the vertex set
§ 𝑨 is the adjacency matrix (assume binary)
§ 𝑿 ∈ ℝ ! ×# is a matrix of node features
§ 𝑣: a node in 𝑉; 𝑁 𝑣 : the set of neighbors of 𝑣.
§ Node features:

§ Social networks: User profile, User image
§ Biological networks: Gene expression profiles, gene 

functional information
§ When there is no node feature in the graph dataset:

§ Indicator vectors (one-hot encoding of a node)
§ Vector of constant 1: [1, 1, …, 1]
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¡ Join adjacency matrix and features
¡ Feed them into a deep neural net:

¡ Issues with this idea:
¡ Issues with this idea:
§ 𝑂(|𝑉|) parameters
§ Not applicable to graphs of different sizes
§ Sensitive to node ordering

18
End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E
A
B
C
D
E

0     1     1     1     0          1     0
1     0     0     1     1          0     0
1     0     0     1     0          0     1
1     1     1     0     1          1     1
0     1     0     1     0          1     0

Feat

A naïve approach

8

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 
• No inductive learning possible

?A

C

B

D

E

[A,X]
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CNN on an image:

19

Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)
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But our graphs look like this:

20

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

or this:

§ There is no fixed notion of locality or sliding 
window on the graph

§ Graph is permutation invariant
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¡ Graph does not have a canonical order of the nodes!
¡ We can have many different order plans.
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¡ Graph does not have a canonical order of the nodes!

22

A
C

B

E
F

D

A

B

C

D

E

F

Node features 𝑿𝟏 Adjacency matrix 𝑨𝟏

A
B
C
D
E
F

A B C D E FOrder plan 1
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¡ Graph does not have a canonical order of the nodes!
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A
C

B

E
F

D

A

B

C

D

E

F

Node features 𝑿𝟏 Adjacency matrix 𝑨𝟏

A
B
C
D
E
F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node features 𝑿𝟐 Adjacency matrix 𝑨𝟐

A
B
C
D
E
F

A B C D E FOrder plan 2
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¡ Graph does not have a canonical order of the nodes!
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A
C

B

E
F

D

A

B

C

D

E

F

Node features 𝑿𝟏 Adjacency matrix 𝑨𝟏

A
B
C
D
E
F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node feature 𝑿𝟐 Adjacency matrix 𝑨𝟐

A
B
C
D
E
F

A B C D E FOrder plan 2

Graph and node representations 
should be the same for Order plan 1 

and Order plan 2
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What does it mean by “graph representation is 
same for two order plans”? 
¡ Consider we learn a function 𝑓 that maps a 

graph 𝐺 = (𝑨, 𝑿) to a vector ℝ$ then
𝑓 𝑨%, 𝑿% = 𝑓 𝑨&, 𝑿&
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A
C

B

E
F

D

E
D

F

B
A

C

Order plan 1: 𝑨𝟏, 𝑿𝟏 Order plan 2: 𝑨𝟐, 𝑿𝟐

𝑨 is the adjacency matrix
𝑿 is the node feature matrix

For two order plans,
output of 𝑓 should 

be the same!

In other words, 𝑓 maps a 
graph to a 𝑑-dim embedding



What does it mean by “graph representation is 
same for two order plans”? 
¡ Consider we learn a function 𝑓 that maps a graph 
𝐺 = (𝑨, 𝑿) to a vector ℝ". 

¡ Then, if 𝑓 𝑨# , 𝑿# = 𝑓 𝑨$ , 𝑿$ for any order plan 𝑖
and 𝑗, we formally say 𝑓 is a permutation invariant 
function.

¡ Definition: For any graph function 𝑓:ℝ % ×'×
ℝ % ×|%| → ℝ", 𝑓 is permutation-invariant if 
𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃) , 𝑃𝑋 for any permutation 𝑃.
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For a graph with |𝑉| nodes, there 
are |𝑉|! different order plans.

𝑨 is the adjacency matrix
𝑿 is the node feature matrix

Permutation 𝑃: a shuffle of the node order
Example: (A,B,C)->(B,C,A)

𝑚… each node has a 𝑚-dim 
feature vector associated with it.

𝑑… output embedding dimensionality of 
embedding the graph 𝐺 = (𝐴, 𝑋)



For node representation: We learn a function 𝑓 that 
maps nodes of 𝐺 to a matrix ℝ|%|×".
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A
C

B

E
F

D

E
D

F

B
A

C

A

B
C
D
E
F

A

B
C
D
E
F

Order plan 1: 𝑨𝟏, 𝑿𝟏 Order plan 2: 𝑨𝟐, 𝑿𝟐

𝑓 𝑨!, 𝑿!	 = 𝑓 𝑨", 𝑿" =

In other words, each node in 𝑉 is 
mapped to a 𝑑-dim embedding.



12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

A
C

B

E
F

D

E
D

F

B
A

C

A

B
C
D
E
F

A

B
C
D
E
F

Order plan 1: 𝑨𝟏, 𝑿𝟏 Order plan 2: 𝑨𝟐, 𝑿𝟐

𝑓 𝑨!, 𝑿!	 = 𝑓 𝑨", 𝑿" =

Representation vector 
of the brown node A

Representation vector 
of the brown node EFor two order plans, the vector of node at 

the same position in the graph is the same!

For node representation: We learn a function 𝑓 that 
maps nodes of 𝐺 to a matrix ℝ|%|×".



For node representation: We learn a function 𝑓 that 
maps nodes of 𝐺 to a matrix ℝ|%|×".
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A
C

B

E
F

D

E
D

F

B
A

C

A

B
C
D
E
F

A

B
C
D
E
F

For two order plans, the vector of node at 
the same position in the graph is the same!

Order plan 1: 𝑨𝟏, 𝑿𝟏 Order plan 2: 𝑨𝟐, 𝑿𝟐

𝑓 𝑨!, 𝑿!	 = 𝑓 𝑨", 𝑿" =
Representation vector 
of the green node C

Representation vector 
of the green node D



For node representation:
¡ Consider we learn a function 𝑓 that maps a 

graph 𝐺 = (𝑨, 𝑿) to a matrix ℝ|(|×$

¡ If the output vector of a node at the same 
position in the graph remains unchanged for any 
order plan, we say 𝑓 is permutation 
equivariant.

¡ Definition: For any node function 𝑓:ℝ ( ×*×
ℝ ( ×|(| → ℝ ( ×$ , 𝑓 is permutation-
equivariant if 𝑃𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃+ , 𝑃𝑋 for any 
permutation 𝑃.
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𝑚… each node has a 𝑚-dim 
feature vector associated with it.

𝑓 maps each node in 𝑉 to a 𝑑-dim embedding.



¡ Permutation-invariant
𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃+ , 𝑃𝑋

¡ Permutation-equivariant
𝑃𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃+ , 𝑃𝑋

¡ Examples:
§ 𝑓 𝐴, 𝑋 = 1$𝑋 : Permutation-invariant 

§ Reason: 𝑓 𝑃𝐴𝑃&, 𝑃𝑋 = 1&𝑃𝑋 = 1&𝑋 = 𝑓 𝐴, 𝑋
§ 𝑓 𝐴, 𝑋 = 𝑋 : Permutation-equivariant

§ Reason: 𝑓 𝑃𝐴𝑃&, 𝑃𝑋 = 𝑃𝑋 = 𝑃𝑓 𝐴, 𝑋
§ 𝑓 𝐴, 𝑋 = 𝐴𝑋 : Permutation-equivariant

§ Reason: 𝑓 𝑃𝐴𝑃&, 𝑃𝑋 = 𝑃𝐴𝑃&𝑃𝑋 = 𝑃𝐴𝑋 = 𝑃𝑓 𝐴, 𝑋
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Permute the input, the output 
stays the same.

(map a graph to a vector)

Permute the input, output also 
permutes accordingly.

(map a graph to a matrix)



¡ Graph neural networks consist of multiple 
permutation equivariant / invariant functions.
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[Bronstein, ICLR 2021 keynote]



Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?
¡ No.
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Switching the order of the 
input leads to different 

outputs!



Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?
¡ No.
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This explains why the naïve MLP approach 
fails for graphs!

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E
A
B
C
D
E

0     1     1     1     0          1     0
1     0     0     1     1          0     0
1     0     0     1     0          0     1
1     1     1     0     1          1     1
0     1     0     1     0          1     0

Feat

A naïve approach

8

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 
• No inductive learning possible

?A

C

B

D

E

[A,X]



¡ Are any neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?
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This explains why the naïve MLP approach is bad!

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E
A
B
C
D
E

0     1     1     1     0          1     0
1     0     0     1     1          0     0
1     0     0     1     0          0     1
1     1     1     0     1          1     1
0     1     0     1     0          1     0

Feat

A naïve approach

8

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 
• No inductive learning possible

?A

C

B

D

E

[A,X]

Next: Design graph neural 
networks that are permutation 

invariant / equivariant by 
passing and aggregating 

information from neighbors!



1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs
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Idea: Node’s neighborhood defines a 
computation graph

37

Determine node 
computation graph

𝑖

Propagate and
transform information

𝑖

Learn how to propagate information across the 
graph to compute node features

[Kipf and Welling, ICLR 2017]
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¡ Key idea: Generate node embeddings based 
on local network neighborhoods 

38

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A
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¡ Intuition: Nodes aggregate information from 
their neighbors using neural networks

39

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Neural networks
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¡ Intuition: Network neighborhood defines a 
computation graph

40

Every node defines a computation 
graph based on its neighborhood!
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¡ Model can be of arbitrary depth:
§ Nodes have embeddings at each layer
§ Layer-0 embedding of node 𝑣 is its input feature, 𝑥𝑣
§ Layer-𝑘 embedding gets information from nodes that 

are 𝑘 hops away

41

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

xA

xB

xC

xE
xF

xA

xA

Layer-2

Layer-1
Layer-0
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¡ Neighborhood aggregation: Key distinctions 
are in how different approaches aggregate 
information across the layers

42

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

?

?

?

?

What is in the box?
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¡ Basic approach: Average information from 
neighbors and apply a neural network

43

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(1) average messages 
from neighbors 

(2) apply neural network
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¡ Basic approach: Average neighbor messages 
and apply a neural network

44

Average of neighbor’s 
previous layer embeddings

Total number 
of layers

Initial 0-th layer embeddings are 
equal to node features

Embedding after K 
layers of neighborhood 

aggregation 

Non-linearity 
(e.g., ReLU)

embedding of 
𝑣	at layer 𝑘h%& = x%

z% = h%
(()

h%
(*+,) = 𝜎(W* :

-∈/(%)

h-
(*)

N(𝑣)
+ B*h%

(*)), ∀𝑘 ∈ {0, … , 𝐾 − 1}
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Notice summation is a permutation 
invariant pooling/aggregation.



What are the invariance and equivariance
properties for a GCN?
¡ Given a node, the GCN that computes its 

embedding is permutation invariant
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A
C

B

E
F

D

Target Node

D A

D

B

C

Shared NN weights

Average of neighbor’s previous layer 
embeddings - Permutation invariant 



¡ Considering all nodes in a graph, GCN computation 
is permutation equivariant
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E
D

F

B
A

C
Target Node

A
C

B

E
F

D

Target Node

Order 
plan 1

Order 
plan 2

Permute the input, the output also permutes 
accordingly - permutation equivariant

Embeddings 𝐻!

Embeddings 𝐻"

A
B
C
D
E
F

A
B
C
D
E
F



¡ Considering all nodes in a graph, GCN computation 
is permutation equivariant 
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Embeddings 𝐻!

Embeddings 𝐻"

Detailed reasoning:
1. The rows of input node features and 
output embeddings are aligned
2. We know computing the embedding 
of a given node with GCN is invariant.
3. So, after permutation, the location 
of a given node in the input node 
feature matrix is changed, and the the 
output embedding of a given node 
stays the same (the colors of node 
feature and embedding are matched)

This is permutation equivariant

Permute the input, the output also permutes 
accordingly - permutation equivariant

A
B
C
D
E
F

A
B
C
D
E
F



𝒛0

How do we train the GCN to 
generate embeddings?

Need to define a loss function on the embeddings.
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We can feed these embeddings into any loss function
and run SGD to train the weight parameters

ℎ!": the hidden representation of node 𝑣 at layer 𝑘
¡ 𝑊": weight matrix for neighborhood aggregation
¡ 𝐵": weight matrix for transforming hidden vector of 

self
49

Trainable weight matrices 
(i.e., what we learn) 

Final node embedding

h0
(2) = x0

z0 = h0
(4)

h0
(567) = 𝜎(W5 ?

8∈:(0)

h8
(5)

N(𝑣) + B5h0
(5)), ∀𝑘 ∈ {0. . 𝐾 − 1}
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¡ Many aggregations can be performed 
efficiently by (sparse) matrix operations

¡ Let 
¡ Then: ∑(∈*1 ℎ(

(,) = A!,:H(,)

¡ Let 𝐷 be diagonal matrix where
𝐷!,! = Deg 𝑣 = |𝑁 𝑣 |
§ The inverse of 𝐷: 𝐷!" is also diagonal:
𝐷#,#!" = 1/|𝑁 𝑣 |

¡ Therefore,

50

Matrix of hidden embeddings 𝐻($%&)

𝒉(
($%&)

𝐻(,) = [ℎ2
(,)…ℎ|4|

(,)]5

𝐻(*+,) = 𝐷8,𝐴𝐻(*);
%∈'())

ℎ%
(+,!)

|𝑁(𝑣)|
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¡ Re-writing update function in matrix form:

§ Red: neighborhood aggregation
§ Blue:  self transformation

¡ In practice, this implies that efficient sparse 
matrix multiplication can be used ( @𝐴 is sparse)

¡ Note: not all GNNs can be expressed in a simple matrix form, 
when aggregation function is complex 

51

𝐻(*+,) = 𝜎( H𝐴𝐻(*)𝑊*
9 +𝐻 * 𝐵*9)

where	 H𝐴 = 𝐷8,𝐴
𝐻(&) = [ℎ"

(&)…ℎ|)|
(&)]*
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¡ Node embedding 𝒛0 is a function of input graph
¡ Supervised setting: We want to minimize loss ℒ:

min
,
ℒ(𝒚, 𝑓, 𝒛! )

§ 𝒚: node label
§ ℒ could be L2 if 𝒚 is real number, or cross entropy 

if 𝒚 is categorical
¡ Unsupervised setting:
§ No node label available
§ Use the graph structure as the supervision!
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¡ One possible idea: “Similar” nodes have similar 
embeddings:

𝐦𝐢𝐧𝚯 ℒ = ;
.),.*

CE(𝑦%,) , DEC 𝑧%, 𝑧) )

§ where 𝑦%,) = 1 when node 𝑢 and 𝑣 are similar 
§ 𝑧2 = 𝑓3 𝑢 and DEC(⋅,⋅) is the dot product

§ CE is the cross entropy loss:

§ CE 𝒚, 𝑓 𝒙 = −∑?@,A (𝑦? log 𝑓B(𝑥)?)
§ 𝑦4 and 𝑓3(𝑥)4 are the actual and predicted values of the 𝑖-th class.
§ Intuition: the lower the loss, the closer the prediction is to one-hot 

¡ Node similarity can be anything from 
Lecture 2, e.g., a loss based on:
§ Random walks (node2vec, DeepWalk, struc2vec)
§ Matrix factorization
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Directly train the model for a supervised task 
(e.g., node classification)

54

Safe or toxic 
drug?

Safe or toxic 
drug?

E.g., a drug-drug 
interaction network
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Directly train the model for a supervised task 
(e.g., node classification)
¡ Use cross entropy loss (Slide 53)

55

Encoder output: 
node embedding

Classification 
weights

Node class 
label

Safe or toxic drug?

ℒ = −?
0∈%

𝑦0log(𝜎(z0I𝜃)) + 1 − 𝑦0 log(1 − 𝜎 z0I𝜃 )
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(1) Define a neighborhood 
aggregation function

(2) Define a loss function on the 
embeddings

𝒛-
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(3) Train on a set of nodes, i.e., 
a batch of compute graphs
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(4) Generate embeddings 
for nodes as needed

Even for nodes we never 
trained on!
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¡ The same aggregation parameters are shared 
for all nodes:
§ The number of model parameters is sublinear in 
|𝑉| and we can generalize to unseen nodes!

59

INPUT GRAPH

B

D
E

F

CA

Compute graph for node A Compute graph for node B

shared parameters

shared parameters

𝑊. 𝐵.
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Inductive node embedding          Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate 
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

z#

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



61

Train with snapshot New node arrives
Generate embedding 

for new node

¡ Many application settings constantly encounter 
previously unseen nodes:

§ E.g., Reddit, YouTube, Google Scholar
¡ Need to generate new embeddings “on the fly”

z#
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1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs
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¡ How do GNNs compare to prominent 
architectures such as Convolutional Neural 
Nets?
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Convolutional neural network (CNN) layer with 
3x3 filter:

64

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

CNN formulation: h#
(+,") = 𝜎(∑-∈/ # ∪{#}W+

-h-
(+)), 	 ∀𝑙 ∈ {0, … , 𝐿 − 1}
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Image OutputCNN 
weights

𝑵 𝒗  represents the 8 neighbor pixels of 𝒗.



Convolutional neural network (CNN) layer with 
3x3 filter:

65

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph

• GNN formulation: h+
(,-&) = 𝜎(𝐖𝒍∑/∈1(+)

2!
(#)

1(+)
+ B,h+

(,)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

• CNN formulation: (previous slide)  h+
(,-&) = 𝜎(∑/∈1 + ∪ + W,

/h/
(,)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

         if we rewrite:                                        h+
(,-&) = 𝜎(∑/∈1 + 𝐖𝒍

𝒖h/
(,) + B,h+

(,)), ∀𝑙 ∈ {0, … , 𝐿 − 1}
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Convolutional neural network (CNN) layer with 
3x3 filter:

66

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph
GNN formulation: h%

(&'() = 𝜎(𝐖𝒍∑*∈,(%)
-!
(#)

,(%)
+ B&h%

(&)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

CNN formulation: h%
(&'() = 𝜎(∑*∈,(%)𝐖𝒍

𝒖h*
(&) + B&h%

(&)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

Key difference: We can learn different 𝑊,
/ for different “neighbor” 𝑢 for pixel 𝑣 on 

the image. The reason is we can pick an order for the 9 neighbors using relative 
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), …, (1, 1)}
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Convolutional neural network (CNN) layer with 
3x3 filter:

68

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph
GNN formulation: h%

(&'() = 𝜎(𝐖𝒍∑*∈,(%)
-!
(#)

,(%)
+ B&h%

(&)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

CNN formulation: h%
(&'() = 𝜎(∑*∈,(%)𝐖𝒍

𝒖h*
(&) + B&h%

(&)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

Key difference: We can learn different 𝑊,
/ for different “neighbor” 𝑢 for pixel 𝑣 on 

the image. The reason is we can pick an order for the 9 neighbors using relative 
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), …, (1, 1)}
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• CNN can be seen as a special GNN with fixed neighbor 
size and ordering:
• The size of the filter is pre-defined for a CNN.
• The advantage of GNN is it processes arbitrary 

graphs with different degrees for each node.
• CNN is not permutation invariant/equivariant.
• Switching the order of pixels leads to different 

outputs.



Transformer is one of the 
most popular 
architectures that 
achieves great
performance in many 
sequence modeling tasks.
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[Attention is all you need. Vaswani et al., NeurIPS 2017]

Key component: self-attention
¡ Every token/word attends to all the other tokens/words via 

matrix calculation.

Stanford studentI aam
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Each token/word has a value vector and a query vector. The value 
vector can be seen as the representation of the token/word. We use 
the query vector to calculate the attention score (weights in the 
weighted sum).

A general definition of attention:
Given a set of vector values, and a vector query, attention is a technique to 
compute a weighted sum of the values, dependent on the query.



Key component: self attention
¡ Every token/word attends to all the other 

tokens/words via matrix calculation.
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I

am

a Stanford

student

Text (Complete) Graph
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A nice blog plot for this: https://towardsdatascience.com/transformers-are-graph-neural-networks-bca9f75412aa

Since each word attends to all the other 
words, the computation graph of a 
transformer layer is identical to that of a GNN 
on the fully-connected “word” graph.

Transformer layer can be seen as a 
special GNN that runs on a fully-

connected “word” graph! 

https://towardsdatascience.com/transformers-are-graph-neural-networks-bca9f75412aa


¡ In this lecture, we introduced
§ Idea for Deep Learning for Graphs

§ Multiple layers of embedding transformation
§ At every layer, use the embedding at previous layer as 

the input
§ Aggregation of neighbors and self-embeddings

§ Graph Convolutional Network
§ Mean aggregation; can be expressed in matrix form

§ GNN is a general architecture
§ CNN can be viewed as a special GNN
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