
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site: http://cs224w.Stanford.edu

http://cs224w.stanford.edu/

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

ANNOUNCEMENTS
• Next Thursday (10/12): Colab 1 due

¡ Intuition: Map nodes to 𝑑-dimensional
embeddings such that similar nodes in the
graph are embedded close together

3

f () =
Input graph 2D node embeddings

How to learn mapping function 𝒇?
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

4

Goal:

Need to define!

Input network d-dimensional
embedding space

similarity 𝑢, 𝑣 	≈ 	 𝐳!"𝐳#

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Encoder: Maps each node to a low-dimensional
vector

¡ Similarity function: Specifies how the
relationships in vector space map to the
relationships in the original network

5

Similarity of 𝑢 and 𝑣 in
the original network

dot product between node
embeddings

Decoder

ENC 𝑣 = 𝐳!

similarity 𝑢, 𝑣 	≈ 	 𝐳!"𝐳#

node in the input graph

d-dimensional
embedding

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Simplest encoding approach: Encoder is just an
embedding-lookup

6

Dimension/size
of embeddings

one column per node

embedding
matrix

embedding vector for a
specific node

𝐙 =

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Limitations of shallow embedding methods:
§ 𝑶(|𝑽|𝒅) parameters are needed:

§ No sharing of parameters between nodes
§ Every node has its own unique embedding

§ Inherently “transductive”:
§ Cannot generate embeddings for nodes that are not seen

during training

§ Do not incorporate node features:
§ Nodes in many graphs have features that we can and

should leverage

710/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Today: We will now discuss deep learnig
methods based on graph neural networks
(GNNs):

¡ Note: All these deep encoders can be
combined with node similarity functions
defined in the Lecture 3.

8

multiple layers of
non-linear transformations
based on graph structure

ENC 𝑣 =

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

9

…

Output: Node embeddings.
Also, we can embed subgraphs,
and graphs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Tasks we will be able to solve:
¡ Node classification
§ Predict the type of a given node

¡ Link prediction
§ Predict whether two nodes are linked

¡ Community detection
§ Identify densely linked clusters of nodes

¡ Network similarity
§ How similar are two (sub)networks

1010/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11

Images

Text/Speech

Modern deep learning toolbox is designed
for simple sequences & grids

But networks are far more complex!
§ Arbitrary size and complex topological structure (i.e.,

no spatial locality like grids)

§ No fixed node ordering or reference point
§ Often dynamic and have multimodal features

12

vs.

Networks Images

Text

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

¡ Loss function:
min
!
ℒ(𝒚, 𝑓! 𝒙)

¡ 𝑓 can be a simple linear layer, an MLP, or other
neural networks (e.g., a GNN later)

¡ Sample a minibatch of input 𝒙
¡ Forward propagation: Compute ℒ given 𝒙
¡ Back-propagation: Obtain gradient ∇!ℒ using a

chain rule.

¡ Use stochastic gradient descent (SGD) to
optimize ℒ for Θ over many iterations.

1410/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Local network neighborhoods:
§ Describe aggregation strategies
§ Define computation graphs

¡ Stacking multiple layers:
§ Describe the model, parameters, training
§ How to fit the model?
§ Simple example for unsupervised and

supervised training

1610/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Assume we have a graph 𝑮:
§ 𝑉 is the vertex set
§ 𝑨 is the adjacency matrix (assume binary)
§ 𝑿 ∈ ℝ ! ×# is a matrix of node features
§ 𝑣: a node in 𝑉; 𝑁 𝑣 : the set of neighbors of 𝑣.
§ Node features:

§ Social networks: User profile, User image
§ Biological networks: Gene expression profiles, gene

functional information
§ When there is no node feature in the graph dataset:

§ Indicator vectors (one-hot encoding of a node)
§ Vector of constant 1: [1, 1, …, 1]

1710/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Join adjacency matrix and features
¡ Feed them into a deep neural net:

¡ Issues with this idea:
¡ Issues with this idea:
§ 𝑂(|𝑉|) parameters
§ Not applicable to graphs of different sizes
§ Sensitive to node ordering

18
End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E
A
B
C
D
E

0 1 1 1 0 1 0
1 0 0 1 1 0 0
1 0 0 1 0 0 1
1 1 1 0 1 1 1
0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters
• No inductive learning possible

?A

C

B

D

E

[A,X]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CNN on an image:

19

Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

But our graphs look like this:

20

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

or this:

§ There is no fixed notion of locality or sliding
window on the graph

§ Graph is permutation invariant
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Graph does not have a canonical order of the nodes!
¡ We can have many different order plans.

2110/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Graph does not have a canonical order of the nodes!

22

A
C

B

E
F

D

A

B

C

D

E

F

Node features 𝑿𝟏 Adjacency matrix 𝑨𝟏

A
B
C
D
E
F

A B C D E FOrder plan 1

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Graph does not have a canonical order of the nodes!

23

A
C

B

E
F

D

A

B

C

D

E

F

Node features 𝑿𝟏 Adjacency matrix 𝑨𝟏

A
B
C
D
E
F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node features 𝑿𝟐 Adjacency matrix 𝑨𝟐

A
B
C
D
E
F

A B C D E FOrder plan 2

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Graph does not have a canonical order of the nodes!

24

A
C

B

E
F

D

A

B

C

D

E

F

Node features 𝑿𝟏 Adjacency matrix 𝑨𝟏

A
B
C
D
E
F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node feature 𝑿𝟐 Adjacency matrix 𝑨𝟐

A
B
C
D
E
F

A B C D E FOrder plan 2

Graph and node representations
should be the same for Order plan 1

and Order plan 2

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

What does it mean by “graph representation is
same for two order plans”?
¡ Consider we learn a function 𝑓 that maps a

graph 𝐺 = (𝑨, 𝑿) to a vector ℝ$ then
𝑓 𝑨%, 𝑿% = 𝑓 𝑨&, 𝑿&

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

A
C

B

E
F

D

E
D

F

B
A

C

Order plan 1: 𝑨𝟏, 𝑿𝟏 Order plan 2: 𝑨𝟐, 𝑿𝟐

𝑨 is the adjacency matrix
𝑿 is the node feature matrix

For two order plans,
output of 𝑓 should

be the same!

In other words, 𝑓 maps a
graph to a 𝑑-dim embedding

What does it mean by “graph representation is
same for two order plans”?
¡ Consider we learn a function 𝑓 that maps a graph
𝐺 = (𝑨, 𝑿) to a vector ℝ".

¡ Then, if 𝑓 𝑨# , 𝑿# = 𝑓 𝑨$, 𝑿$ for any order plan 𝑖
and 𝑗, we formally say 𝑓 is a permutation invariant
function.

¡ Definition: For any graph function 𝑓:ℝ % ×'×
ℝ % ×|%| → ℝ", 𝑓 is permutation-invariant if
𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃) , 𝑃𝑋 for any permutation 𝑃.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

For a graph with |𝑉| nodes, there
are |𝑉|! different order plans.

𝑨 is the adjacency matrix
𝑿 is the node feature matrix

Permutation 𝑃: a shuffle of the node order
Example: (A,B,C)->(B,C,A)

𝑚… each node has a 𝑚-dim
feature vector associated with it.

𝑑… output embedding dimensionality of
embedding the graph 𝐺 = (𝐴, 𝑋)

For node representation: We learn a function 𝑓 that
maps nodes of 𝐺 to a matrix ℝ|%|×".

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

A
C

B

E
F

D

E
D

F

B
A

C

A

B
C
D
E
F

A

B
C
D
E
F

Order plan 1: 𝑨𝟏, 𝑿𝟏 Order plan 2: 𝑨𝟐, 𝑿𝟐

𝑓 𝑨!, 𝑿!	 = 𝑓 𝑨", 𝑿" =

In other words, each node in 𝑉 is
mapped to a 𝑑-dim embedding.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

A
C

B

E
F

D

E
D

F

B
A

C

A

B
C
D
E
F

A

B
C
D
E
F

Order plan 1: 𝑨𝟏, 𝑿𝟏 Order plan 2: 𝑨𝟐, 𝑿𝟐

𝑓 𝑨!, 𝑿!	 = 𝑓 𝑨", 𝑿" =

Representation vector
of the brown node A

Representation vector
of the brown node EFor two order plans, the vector of node at

the same position in the graph is the same!

For node representation: We learn a function 𝑓 that
maps nodes of 𝐺 to a matrix ℝ|%|×".

For node representation: We learn a function 𝑓 that
maps nodes of 𝐺 to a matrix ℝ|%|×".

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

A
C

B

E
F

D

E
D

F

B
A

C

A

B
C
D
E
F

A

B
C
D
E
F

For two order plans, the vector of node at
the same position in the graph is the same!

Order plan 1: 𝑨𝟏, 𝑿𝟏 Order plan 2: 𝑨𝟐, 𝑿𝟐

𝑓 𝑨!, 𝑿!	 = 𝑓 𝑨", 𝑿" =
Representation vector
of the green node C

Representation vector
of the green node D

For node representation:
¡ Consider we learn a function 𝑓 that maps a

graph 𝐺 = (𝑨, 𝑿) to a matrix ℝ|(|×$

¡ If the output vector of a node at the same
position in the graph remains unchanged for any
order plan, we say 𝑓 is permutation
equivariant.

¡ Definition: For any node function 𝑓:ℝ (×*×
ℝ (×|(| → ℝ (×$, 𝑓 is permutation-
equivariant if 𝑃𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃+ , 𝑃𝑋 for any
permutation 𝑃.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

𝑚… each node has a 𝑚-dim
feature vector associated with it.

𝑓 maps each node in 𝑉 to a 𝑑-dim embedding.

¡ Permutation-invariant
𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃+ , 𝑃𝑋

¡ Permutation-equivariant
𝑃𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃+ , 𝑃𝑋

¡ Examples:
§ 𝑓 𝐴, 𝑋 = 1$𝑋 : Permutation-invariant

§ Reason: 𝑓 𝑃𝐴𝑃&, 𝑃𝑋 = 1&𝑃𝑋 = 1&𝑋 = 𝑓 𝐴, 𝑋
§ 𝑓 𝐴, 𝑋 = 𝑋 : Permutation-equivariant

§ Reason: 𝑓 𝑃𝐴𝑃&, 𝑃𝑋 = 𝑃𝑋 = 𝑃𝑓 𝐴, 𝑋
§ 𝑓 𝐴, 𝑋 = 𝐴𝑋 : Permutation-equivariant

§ Reason: 𝑓 𝑃𝐴𝑃&, 𝑃𝑋 = 𝑃𝐴𝑃&𝑃𝑋 = 𝑃𝐴𝑋 = 𝑃𝑓 𝐴, 𝑋
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

Permute the input, the output
stays the same.

(map a graph to a vector)

Permute the input, output also
permutes accordingly.

(map a graph to a matrix)

¡ Graph neural networks consist of multiple
permutation equivariant / invariant functions.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

[Bronstein, ICLR 2021 keynote]

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
¡ No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

Switching the order of the
input leads to different

outputs!

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
¡ No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

This explains why the naïve MLP approach
fails for graphs!

End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E
A
B
C
D
E

0 1 1 1 0 1 0
1 0 0 1 1 0 0
1 0 0 1 0 0 1
1 1 1 0 1 1 1
0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters
• No inductive learning possible

?A

C

B

D

E

[A,X]

¡ Are any neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

This explains why the naïve MLP approach is bad!

End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E
A
B
C
D
E

0 1 1 1 0 1 0
1 0 0 1 1 0 0
1 0 0 1 0 0 1
1 1 1 0 1 1 1
0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters
• No inductive learning possible

?A

C

B

D

E

[A,X]

Next: Design graph neural
networks that are permutation

invariant / equivariant by
passing and aggregating

information from neighbors!

1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs

3610/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Idea: Node’s neighborhood defines a
computation graph

37

Determine node
computation graph

𝑖

Propagate and
transform information

𝑖

Learn how to propagate information across the
graph to compute node features

[Kipf and Welling, ICLR 2017]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Key idea: Generate node embeddings based
on local network neighborhoods

38

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Intuition: Nodes aggregate information from
their neighbors using neural networks

39

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Neural networks
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Intuition: Network neighborhood defines a
computation graph

40

Every node defines a computation
graph based on its neighborhood!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Model can be of arbitrary depth:
§ Nodes have embeddings at each layer
§ Layer-0 embedding of node 𝑣 is its input feature, 𝑥𝑣
§ Layer-𝑘 embedding gets information from nodes that

are 𝑘 hops away

41

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

xA

xB

xC

xE
xF

xA

xA

Layer-2

Layer-1
Layer-0

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

42

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

?

?

?

?

What is in the box?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Basic approach: Average information from
neighbors and apply a neural network

43

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(1) average messages
from neighbors

(2) apply neural network
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Basic approach: Average neighbor messages
and apply a neural network

44

Average of neighbor’s
previous layer embeddings

Total number
of layers

Initial 0-th layer embeddings are
equal to node features

Embedding after K
layers of neighborhood

aggregation

Non-linearity
(e.g., ReLU)

embedding of
𝑣	at layer 𝑘h%& = x%

z% = h%
(()

h%
(*+,) = 𝜎(W* :

-∈/(%)

h-
(*)

N(𝑣)
+ B*h%

(*)), ∀𝑘 ∈ {0, … , 𝐾 − 1}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Notice summation is a permutation
invariant pooling/aggregation.

What are the invariance and equivariance
properties for a GCN?
¡ Given a node, the GCN that computes its

embedding is permutation invariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

A
C

B

E
F

D

Target Node

D A

D

B

C

Shared NN weights

Average of neighbor’s previous layer
embeddings - Permutation invariant

¡ Considering all nodes in a graph, GCN computation
is permutation equivariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

E
D

F

B
A

C
Target Node

A
C

B

E
F

D

Target Node

Order
plan 1

Order
plan 2

Permute the input, the output also permutes
accordingly - permutation equivariant

Embeddings 𝐻!

Embeddings 𝐻"

A
B
C
D
E
F

A
B
C
D
E
F

¡ Considering all nodes in a graph, GCN computation
is permutation equivariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

Embeddings 𝐻!

Embeddings 𝐻"

Detailed reasoning:
1. The rows of input node features and
output embeddings are aligned
2. We know computing the embedding
of a given node with GCN is invariant.
3. So, after permutation, the location
of a given node in the input node
feature matrix is changed, and the the
output embedding of a given node
stays the same (the colors of node
feature and embedding are matched)

This is permutation equivariant

Permute the input, the output also permutes
accordingly - permutation equivariant

A
B
C
D
E
F

A
B
C
D
E
F

𝒛0

How do we train the GCN to
generate embeddings?

Need to define a loss function on the embeddings.
4810/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

We can feed these embeddings into any loss function
and run SGD to train the weight parameters

ℎ!": the hidden representation of node 𝑣 at layer 𝑘
¡ 𝑊": weight matrix for neighborhood aggregation
¡ 𝐵": weight matrix for transforming hidden vector of

self
49

Trainable weight matrices
(i.e., what we learn)

Final node embedding

h0
(2) = x0

z0 = h0
(4)

h0
(567) = 𝜎(W5 ?

8∈:(0)

h8
(5)

N(𝑣) + B5h0
(5)), ∀𝑘 ∈ {0. . 𝐾 − 1}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Many aggregations can be performed
efficiently by (sparse) matrix operations

¡ Let
¡ Then: ∑(∈*1 ℎ(

(,) = A!,:H(,)

¡ Let 𝐷 be diagonal matrix where
𝐷!,! = Deg 𝑣 = |𝑁 𝑣 |
§ The inverse of 𝐷: 𝐷!" is also diagonal:
𝐷#,#!" = 1/|𝑁 𝑣 |

¡ Therefore,

50

Matrix of hidden embeddings 𝐻($%&)

𝒉(
($%&)

𝐻(,) = [ℎ2
(,)…ℎ|4|

(,)]5

𝐻(*+,) = 𝐷8,𝐴𝐻(*);
%∈'())

ℎ%
(+,!)

|𝑁(𝑣)|

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Re-writing update function in matrix form:

§ Red: neighborhood aggregation
§ Blue: self transformation

¡ In practice, this implies that efficient sparse
matrix multiplication can be used (@𝐴 is sparse)

¡ Note: not all GNNs can be expressed in a simple matrix form,
when aggregation function is complex

51

𝐻(*+,) = 𝜎(H𝐴𝐻(*)𝑊*
9 +𝐻 * 𝐵*9)

where	 H𝐴 = 𝐷8,𝐴
𝐻(&) = [ℎ"

(&)…ℎ|)|
(&)]*

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Node embedding 𝒛0 is a function of input graph
¡ Supervised setting: We want to minimize loss ℒ:

min
,
ℒ(𝒚, 𝑓, 𝒛!)

§ 𝒚: node label
§ ℒ could be L2 if 𝒚 is real number, or cross entropy

if 𝒚 is categorical
¡ Unsupervised setting:
§ No node label available
§ Use the graph structure as the supervision!

5210/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ One possible idea: “Similar” nodes have similar
embeddings:

𝐦𝐢𝐧𝚯 ℒ = ;
.),.*

CE(𝑦%,) , DEC 𝑧%, 𝑧))

§ where 𝑦%,) = 1 when node 𝑢 and 𝑣 are similar
§ 𝑧2 = 𝑓3 𝑢 and DEC(⋅,⋅) is the dot product

§ CE is the cross entropy loss:

§ CE 𝒚, 𝑓 𝒙 = −∑?@,A (𝑦? log 𝑓B(𝑥)?)
§ 𝑦4 and 𝑓3(𝑥)4 are the actual and predicted values of the 𝑖-th class.
§ Intuition: the lower the loss, the closer the prediction is to one-hot

¡ Node similarity can be anything from
Lecture 2, e.g., a loss based on:
§ Random walks (node2vec, DeepWalk, struc2vec)
§ Matrix factorization

5310/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Directly train the model for a supervised task
(e.g., node classification)

54

Safe or toxic
drug?

Safe or toxic
drug?

E.g., a drug-drug
interaction network

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Directly train the model for a supervised task
(e.g., node classification)
¡ Use cross entropy loss (Slide 53)

55

Encoder output:
node embedding

Classification
weights

Node class
label

Safe or toxic drug?

ℒ = −?
0∈%

𝑦0log(𝜎(z0I𝜃)) + 1 − 𝑦0 log(1 − 𝜎 z0I𝜃)

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

56

(1) Define a neighborhood
aggregation function

(2) Define a loss function on the
embeddings

𝒛-

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

57

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

58

(4) Generate embeddings
for nodes as needed

Even for nodes we never
trained on!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ The same aggregation parameters are shared
for all nodes:
§ The number of model parameters is sublinear in
|𝑉| and we can generalize to unseen nodes!

59

INPUT GRAPH

B

D
E

F

CA

Compute graph for node A Compute graph for node B

shared parameters

shared parameters

𝑊. 𝐵.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

60

Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

z#

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

61

Train with snapshot New node arrives
Generate embedding

for new node

¡ Many application settings constantly encounter
previously unseen nodes:

§ E.g., Reddit, YouTube, Google Scholar
¡ Need to generate new embeddings “on the fly”

z#

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs

6210/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ How do GNNs compare to prominent
architectures such as Convolutional Neural
Nets?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

Convolutional neural network (CNN) layer with
3x3 filter:

64

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

CNN formulation: h#
(+,") = 𝜎(∑-∈/ # ∪{#}W+

-h-
(+)), 	 ∀𝑙 ∈ {0, … , 𝐿 − 1}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Image OutputCNN
weights

𝑵 𝒗 represents the 8 neighbor pixels of 𝒗.

Convolutional neural network (CNN) layer with
3x3 filter:

65

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph

• GNN formulation: h+
(,-&) = 𝜎(𝐖𝒍∑/∈1(+)

2!
(#)

1(+)
+ B,h+

(,)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

• CNN formulation: (previous slide) h+
(,-&) = 𝜎(∑/∈1 + ∪ + W,

/h/
(,)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

 if we rewrite: h+
(,-&) = 𝜎(∑/∈1 + 𝐖𝒍

𝒖h/
(,) + B,h+

(,)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Convolutional neural network (CNN) layer with
3x3 filter:

66

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph
GNN formulation: h%

(&'() = 𝜎(𝐖𝒍∑*∈,(%)
-!
(#)

,(%)
+ B&h%

(&)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

CNN formulation: h%
(&'() = 𝜎(∑*∈,(%)𝐖𝒍

𝒖h*
(&) + B&h%

(&)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

Key difference: We can learn different 𝑊,
/ for different “neighbor” 𝑢 for pixel 𝑣 on

the image. The reason is we can pick an order for the 9 neighbors using relative
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), …, (1, 1)}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Convolutional neural network (CNN) layer with
3x3 filter:

68

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph
GNN formulation: h%

(&'() = 𝜎(𝐖𝒍∑*∈,(%)
-!
(#)

,(%)
+ B&h%

(&)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

CNN formulation: h%
(&'() = 𝜎(∑*∈,(%)𝐖𝒍

𝒖h*
(&) + B&h%

(&)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

Key difference: We can learn different 𝑊,
/ for different “neighbor” 𝑢 for pixel 𝑣 on

the image. The reason is we can pick an order for the 9 neighbors using relative
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), …, (1, 1)}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

• CNN can be seen as a special GNN with fixed neighbor
size and ordering:
• The size of the filter is pre-defined for a CNN.
• The advantage of GNN is it processes arbitrary

graphs with different degrees for each node.
• CNN is not permutation invariant/equivariant.
• Switching the order of pixels leads to different

outputs.

Transformer is one of the
most popular
architectures that
achieves great
performance in many
sequence modeling tasks.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 69

[Attention is all you need. Vaswani et al., NeurIPS 2017]

Key component: self-attention
¡ Every token/word attends to all the other tokens/words via

matrix calculation.

Stanford studentI aam

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 70

Each token/word has a value vector and a query vector. The value
vector can be seen as the representation of the token/word. We use
the query vector to calculate the attention score (weights in the
weighted sum).

A general definition of attention:
Given a set of vector values, and a vector query, attention is a technique to
compute a weighted sum of the values, dependent on the query.

Key component: self attention
¡ Every token/word attends to all the other

tokens/words via matrix calculation.

71

I

am

a Stanford

student

Text (Complete) Graph
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

A nice blog plot for this: https://towardsdatascience.com/transformers-are-graph-neural-networks-bca9f75412aa

Since each word attends to all the other
words, the computation graph of a
transformer layer is identical to that of a GNN
on the fully-connected “word” graph.

Transformer layer can be seen as a
special GNN that runs on a fully-

connected “word” graph!

https://towardsdatascience.com/transformers-are-graph-neural-networks-bca9f75412aa

¡ In this lecture, we introduced
§ Idea for Deep Learning for Graphs

§ Multiple layers of embedding transformation
§ At every layer, use the embedding at previous layer as

the input
§ Aggregation of neighbors and self-embeddings

§ Graph Convolutional Network
§ Mean aggregation; can be expressed in matrix form

§ GNN is a general architecture
§ CNN can be viewed as a special GNN

7210/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

