Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site: hitp://cs224w.Stanford.edu

Stanford CS224W:

Graph Neural Networks

http://cs224w.stanford.edu/

ANNOUNCEMENTS
* Next Thursday (10/12): Colab 1 due

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Recap: Node Embeddings

Intuition: Map nodes to d-dimensional
embeddings such that similar nodes in the
graph are embedded close together

Input graph 2D node embeddings

How to learn mapping function f?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

Recap: Node Embeddings

Goal: similarity(u,v) ~ z,)z,

Need to define!

\ .er
\ :

*
.
.
.
.
.*
.
*
.*
Py
.
.

\\
L

d-dimensional

Input network _
embedding space

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Recap: Two Key Components

Encoder: Maps each node to a low-dimensional

vector d-dimensional
ENC(v) =z, embedding

node in the input graph

Specifies how the
relationships in vector space map to the
relationships in the original network

similarity(u,v) = zlz, Decoder
Similarity of u and v in dot product between node

the original network embeddings

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Recap: “Shallow” Encoding

Simplest encoding approach: Encoder is just an
embedding-lookup

embedding vector for a

embedding specific node
matrix

\
7 —

Dimension/size
. of embeddings

‘9 /

~
one column per node

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

Recap: Shallow Encoders

Limitations of shallow embedding methods:
O(|V|d) parameters are needed:

No sharing of parameters between nodes

Every node has its own unigue embedding

Inherently “transductive”:

Cannot generate embeddings for nodes that are not seen
during training

Do not incorporate node features:

Nodes in many graphs have features that we can and
should leverage

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Today: Deep Graph Encoders

10/7/21

Today: We will now discuss deep learnig
methods based on graph neural networks
(GNNs):

multiple layers of

ENC(v) = non-linear transformations
based on graph structure

Note: All these deep encoders can be
combined with node similarity functions
defined in the Lecture 3.

Deep Graph Encoders

Graph Regularization, Graph
convolutions e.g., dropout convolutions
& &
& &
Activation Q Q
function &
/ >

A,

y
'y

Output: Node embeddings.
Also, we can embed subgraphs,

and graphs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Tasks on Networks

Tasks we will be able to solve:
Node classification

Predict the type of a given node
Link prediction

Predict whether two nodes are linked
Community detection

ldentify densely linked clusters of nodes
Network similarity

How similar are two (sub)networks

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Modern ML Toolbox

Patterns of Local Em

Contrast

ST
1]
)
e
LE'S

Face
Features

NS
RIS
AN
Jeletele
NELRL
.B§§$5"”553§;
°1:1't°1°t
NI ISR T
XK DR

1e
X

P

Output Layer

%
@,
%

A

X4

2Q

NI&

260
4

Images

e 9 9

Text/Speech A A A
| | |
® ® ©

Modern deep learning toolbox is designed
for simple sequences & grids

C LCC d Ord FVV. IV C LCd 5 WV STapitS, M. SFVv.old peivye

U 7

Why is it Hard?

But networks are far more complex!

Arbitrary size and complex topological structure (i.e.,
no spatial locality like grids)

Text

Networks Images

No fixed node ordering or reference point
Often dynamic and have multimodal features

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Outline of Today’s Lecture

Basics of deep learning %

Deep learning for graphs
Graph Convolutional Networks

GNNs subsume CNNs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Summary: Basics of Deep Learning

Loss function:

f can
neura

Samp

e asim
networ

e a mini

m(gn L(y' f@ (X))

ole linear layer, an MLP, or other
ks (e.g., a GNN later)

patch of input x

Forward propagation: Compute L given x

Back-propagation: Obtain gradient Vg L using a
chain rule.

Use stochastic gradient descent (SGD) to
optimize L for ® over many iterations.

10/7/21

ure Leskovec, Stan

ford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Stanford CS224W:
Deep Learning for Graphs

Content

Local network neighborhoods:
Describe aggregation strategies
Define computation graphs

Stacking multiple layers:
Describe the model, parameters, training
How to fit the model?

Simple example for unsupervised and
supervised training

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

16

Setup

Assume we have a graph G:
V is the vertex set
A is the adjacency matrix (assume binary)

X € RWVIX™M is 3 matrix of node features
v:anodeinV; N(v): the set of neighbors of v.

Node features:
Social networks: User profile, User image

Biological networks: Gene expression profiles, gene
functional information

When there is no node feature in the graph dataset:

Indicator vectors (one-hot encoding of a node)
Vector of constant 1: [1, 1, ..., 1]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

A Naive Approach

Join adjacency matrix and features
Feed them into a deep neural net:

hidden layer 1 hidden layer 2 hidden layer 3

input layer
A B C D E Feat Q
() Q_ output layer
A o 1 1 1 O 1 0
@:
Blft o o1 1 o0 o0 -
Cl 10010 01 G u
G
D 11 1 0 1 1 1 c*
ELo 1010 1 0 o

Issues with this idea:

O(|V]) parameters
Not applicable to graphs of different sizes

Sensitive to node ordering

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

ldea: Convolutional Networks

CNN on an image:

Subsampling

Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19

Real-World Graphs

But our graphs look like this:

a o
e J° | orthis A V)
v ® ¢ .o 7 o =
e o \ .' ®
® ® o ® o °

= There is no fixed notion of locality or sliding
window on the graph

= Graph is permutation invariant

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

Permutation Invariance

Graph does not have a canonical order of the nodes!
We can have many different order plans.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

Permutation Invariance

Graph does not have a canonical order of the nodes!
Node features X, Adjacency matrix A4

Order plan1 ABCDEFTF

mm O N @ >

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

Permutation Invariance

Graph does not have a canonical order of the nodes!
Node features X, Adjacency matrix A4

Order plan1 ABCDEFTF

mm O N @ >

Node features X, Adjacency matrix 4,

Order plan 2 ~ G ABCDEF
- D
c GID 2
P @D
@D

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

Permutation Invariance

Graph does not have a canonical order of the nodes!
Node features X, Adjacency matrix A4

Order plan 1 A~ G A B CDEF
(D g
G-
D @D

Order plan 1

or Order plan 2

O
m T N C

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24

Permutation Invariance

What does it mean by “graph representation is
same for two Order planS”? In other words, f maps a

graph to a d-dim embedding

Consider we learn a function f that maps a
graph G = (4, X) to a vector R? then
f(ALX) = f(A2,X3) ke nots eature mate
Order plan1: 44, X4 Order plan 2: 4;, X,

For two order plans,
output of f should
be the same!

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

Permutation Invariance

What does it mean by “graph representation is
same for two order plans”?

Consider we learn a function f that maps a graph
G — (A, X) tO 3 VeCtOF Rd A is the adjacency matrix

X is the node feature matrix

Then, if f(A;, X;) = f(Aj,Xj) for any order plan i
and j, we formally say [is a permutation invariant
fu nction . For a graph with |V| nodes, there

are |V|! different order plans. m... each node has a m-dim
feature vector associated with it.

Definition: For any graph function f: RIVIXm
RIVIXIVI - R4, f is permutation-invariant if
f(4,X) = f(PAPT, PX) for any permutation P.

d... output embedding dimensionality of Permutation P: a shuffle of the node order
embedding the graph G = (4,X) Example: (A,B,C)->(B,C,A)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

Permutation Equivariance

For node representation: We learn a function f that

maps nodes of G to a matrix RIVIXd ~ Inctheruords, each node in s

Order plan 1: 44, X4 Order plan 2: 45, X,

A A
B B
C _C
FALX) = flaXa) = 5
E E
F F

12/6/18 skovec, Stanford C5224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

Permutation Equivariance

For node representation: We learn a function f that
maps nodes of G to a matrix RIVIX2.

Order plan 1: A4, X4 Order plan 2: 45, X,

Representation vector
of the brown node A

f(A1»X1) =

Representation vector
of the brown node E

For two order plans, the vector of node at
the same position in the graph is the same!

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

mM m O N W

28

Permutation Equivariance

For node representation: We learn a function f that
maps nodes of G to a matrix RIVIX2,

Order plan 1: 44, X4 Order plan 2: 45, X,

A
B

Representation vector

of the green node C f(AZ) XZ) — |E

Representation vector
of the green node D

f(A1»X1) =

|

For two order plans, the vector of node at
the same position in the graph is the same!F

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

Permutation Equivariance

For node representation:
Consider we learn a function f that maps a
graph G = (4, X) to a matrix RIV*¢

If the output vector of a node at the same
position in the graph remains unchanged for any
order plan, we say f is permutation
equivariant.

m... each node has a m-dim
feature vector associated with it.

Definition: For any node function f: RIVI*™x
RIVIXIVI - RIVIXd £ is permutation-
equivariant if Pf(4,X) = f(PAPT, PX) for any
permUtatlon P' f maps each node in V to a d-dim embedding.

ure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Summary: Invariance and Equivariance

Pe 'm Utatio n-i nva ria nt Permute the input, the output

stays the same.

f (A’ X) — f (PAPT’ PX) (map a graph to a vector)
PermUtation-eq Uiva ria nt Permute the input, output also
Pf (A’ X) — f(PAPT, PX) (permutes accordingly.

map a graph to a matrix)

Examples:
f(AX) = : Permutation-invariant
Reason: f(PAPT,PX) = 1TPX = = f(4,X)
f(A,X) = X : Permutation-equivariant
Reason: f(PAPT,PX) = PX = Pf(4,X)
f(AX) = : Permutation-equivariant

Reason: f(PAPT,PX) = PAPTPX = PAX = Pf(4,X)

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

[Bronstein, ICLR 2021 keynote]

Graph Neural Network Overview

Graph neural networks consist of multiple
permutation equivariant / invariant functions.

A

/

—

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Graph Neural Network Overview

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?

No.

Switching the order of the
input leads to different
outputs!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

Graph Neural Network Overview

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
No.

A B C D E Feat

r N\ output layer
A o 1 1 1 O 1 0
B i 0 0 1 1 0 O J
cCl 10010 o0 1 "
D 11 1 0 1 1 1
E

L o 1 0 1 O 1 0)

the naive MLP approach
fails for graphs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

Graph Neural Network Overview

Are any neural network architectures, e.g.,

?

passing and aggregating
Information from neighbors

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Outline of Today’s Lecture

v
v

Graph Convolutional Networks 3

GNNs subsume CNNs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

[Kipf and Welling, ICLR 2017]

Graph Convolutional Networks

ldea: Node’s neighborhood defines a
computation graph
i

Determine node Propagate and
computation graph transform information

Learn how to propagate information across the
graph to compute node features

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

ldea: Aggregate Neighbors

Key idea: Generate node embeddings based
on local network neighborhoods

ARGET NODE ® A‘:‘I)

"

a

A .”“

. |
K A e .
A' e
A < > TETTPETYPTTTTTEITY ‘ V'
3
Q.’
.0

°-n
INPUTGRAPH T T A

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

ldea: Aggregate Neighbors

Intuition: Nodes aggregate information from
their neighbors using neural networks

TARGET NODE

l

A
‘/ B «

INPUT GRAPH

Neural networks

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

ldea: Aggregate Neighbors

Intuition: Network neighborhood defines a

computation graph
Every node defines a computation .
graph based on its neighborhood! /

INPUT GRAPH

o o ® o O
] N o []]
R o® % o %mgé. T .% o &
O2% N % Alve. 2 A &S
i 9® %e see® e ie®t s el e G, o

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

Deep Model: Many Layers

Model can be of arbitrary depth:

Nodes have embeddings at each layer

Layer-0 embedding of node v is its input feature, x,,
Layer-k embedding gets information from nodes that

are k hops away

Layer-0
Layer-1 @ X4
TARGET NODE ‘A‘< ‘ XC
| Layer-2 .~ ® XA
A o : ““““““ B XB
/ e o0l g xp

N
INPUTGRAPH o e A

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

41

Neighborhood Aggregation

Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

TARGET NODE | ' 4‘: ‘
l What is in the box?.~

A

A B
/ Dt D g ol

' N
INPUTGRAPH T T A

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

Neighborhood Aggregation

Basic approach: Average information from
neighbors and apply a neural network

(1) average messages -
TARGET NODE from neigh bors '4‘4: o

‘0
’Q
*

A Q”" ‘....""‘
~ 4"-‘ e .
&
.................. ...,
A < O ®
‘..

°-n
INPUTGRAPH & T A

(2) apply neural network

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

The Math: Deep Encoder

Basic approach: Average neighbor messages
and apply a neural network

embedding of

hY = x
v v / v at layer k

_ h(k)
h(+D —fg(w, z B, h), vk € (0, ..., K- 1)
NI
UueN(v) \
(K) _ Total number
Z, = h; Average of neighbor’s of layers

previous layer embeddings

Non-linearity

(e.g., RelLU) Notice summation is a permutation

invariant pooling/aggregation.
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

GCN: Invariance and Equivariance

What are the invariance and equivariance
properties for a GCN?
Given a node, the GCN that computes its
embedding is permutation invariant

O«D«H«Déz

Permutation invariant

Target Node

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

GCN: Invariance and Equivariance

Considering all nodes in a graph, GCN computation
IS permutation equivariant

Nodefeature X; Adjacency matrixA; Embeddings H,;

A B CDEF

e

Permute the input, the output also permutes
accordingly - permutation equivariant
Node feature X, Adjacency matrix 4, Embeddings H»,

A D
Order - (D
plan 1

E

F D

MmN ® >

Target Node

Order ~ G ABCDEF A
A

lan 2 B 5 2

P :

D D D

- GEED - .

- I - F

Target Node

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

GCN: Invariance and Equivariance

Considering all nodes in a graph, GCN computation
IS permutation equivariant

Nodefeature X; AdjacencymatrixA; Embeddings H,;

Detailed reasoning: - D

1. The rows of input node features and i

output embeddings are aligned

A B CDTEF
2. We know computing the embedding E

of a given node with GCN is invariant. F D @

3. So, after permutation, the location = Permute the input, the output also permutes

of a given node in the input node accordingly - permutation equivariant
Node feature X, Adjacency matrix 4, Embeddlngs H»,

feature matrix is changed, and the the | P ABCDEF
output embedding of a given node
stays the same (the colors of node
feature and embedding are matched)
This is permutation equivariant

mmoONn o>

mm ONn @™ >

M m

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

Training the Model

How do we train the GCN to
generate embeddings?

o
.t

ZAA<-

Need to define a loss function on the embeddings.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

Model Parameters

Trainable weight matrices
0) _ i.e., what we learn

(k+1) < P 1
WD — o (T z NGy B, vk € (0K ~ 1

eN
Zy, = hl(]K) HEN®)
~—

Final node embedding

We can feed these embeddings into any loss function
and run SGD to train the weight parameters

h¥: the hidden representation of node v at layer k
W, : weight matrix for neighborhood aggregation
B}, : weight matrix for transforming hidden vector of
self

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Matrix Formulation (1)

Many aggregations can be performed

efficiently by (sparse) matrix operations

Let () = [h(k) hl(‘}',‘l)]T Matrix of hidden embeddings H®*~)

Then: ZuENv hik) = Av’:H(k)
Let D be diagonal matrix where
Dv,v = Deg(v) = [N(v)|
The inverse of D: D1 is also diagonal:
D, =1/IN(w)| p k=D
Therefore,

h,gk_l)
IN(v)]

UEN (V)

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

Matrix Formulation (2)

Re-writing update function in matrix form:

H&D = g(AH®OW, + HE BT m%
where A=D"14

Red: neighborhood aggregation
Blue: self transformation

In practice, this implies that efficient sparse
matrix multiplication can be used (4 is sparse)

Note: not all GNNs can be expressed in a simple matrix form,
when aggregation function is complex

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

How to Train A GNN

Node embedding z,, is a function of input graph
Supervised setting: We want to minimize loss L:

m@in L(y' f@ (Zv))

y: node label

L could be L2 if y is real number, or cross entropy
if y is categorical
Unsupervised setting:

No node label available
Use the graph structure as the supervision!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

Unsupervised Training

One possible idea: “Similar” nodes have similar
embeddings:

min@ L — 2 CE(yu’v; DEC(ZuJ ZU))

ZuZy
where y,, ,, = 1 when node u and v are similar
z,, = fe(u) and DEC(:,) is the dot product

CE is the cross entropy loss:

CE(y, f(x)) = — 25, (; log fo (x);)

y; and fg(x); are the actual and predicted values of the i-th class.
Intuition: the lower the loss, the closer the prediction is to one-hot

Node similarity can be anything from
Lecture 2, e.g., a loss based on:

Random walks (node2vec, DeepWalk, struc2vec)
Matrix factorization

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

Supervised Training

Directly train the model for a supervised task
(e.g., node classification)

_ Safe or toxic
Safe or toxic

drug?
drug? .
|
% o o8
v2%
Yuv
i ® E.g., a drug-drug

interaction network

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 54

Supervised Training

Directly train the model for a supervised task
(e.g., node classification)
Use cross entropy loss (Slide 53)

L=~ z yulog(o(zyB)) + (1 —yDlog(1 — o((zy)

vevV

Encoder output: / Classification
weights

node embedding

Node class

. oq @ label
Safe or toxic drug? g n ®

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 55

Model Design: Overview

(1) Define a neighborhood
aggregation function

ZAAd-

(2) Define a loss function on the
embeddings

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56

Model Design: Overview

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

INPUT GRAPH

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57

Model Design: Overview

(4) Generate embeddings
/ for nodes as needed

Even for nodes we never
trained on!

INPUT GRAPH

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58

Inductive Capability

The same aggregation parameters are shared
for all nodes:

The number of model parameters is sublinear in
|V'| and we can generalize to unseen nodes!

A oe0 Wi Bx o o
/ ‘ ﬁ “shared parameters ‘ i

INPUT GRAPH Compute graph for node A Compute graph for node B

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59

Inductive Capability: New Graphs

- O\ /
o <4

Train on one graph Generalize to new graph

Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate
embeddings on newly collected data about organism B

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 60

Inductive Capability: New Nodes

Generate embedding
Train with snapshot New node arrives for new node

Many application settings constantly encounter
previously unseen nodes:

E.g., Reddit, YouTube, Google Scholar
Need to generate new embeddings “on the fly”

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

Outline of Today’s Lecture

GNNs subsume CNNs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Architecture Comparison

How do GNNs compare to prominent
architectures such as Convolutional Neural
Nets?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

Convolutional Neural Network

Convolutional neural network (CNN) layer with
3x3 filter:

CNN

weights Output

Image

CNN formulation: hgﬂ) = a(ZuEN(v)U{v}Wﬁhﬁ)), vie{0,..,L—1}

N (v) represents the 8 neighbor pixels of v.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64

GNN vs. CNN

Convolutional neural network (CNN) layer with
3x3 filter:

Image Graph

D
* GNN formulation: h(e o (W) Zuenw) “:(Y + B h(l)),‘v’l €{0,..,L—1}

* CNN formulation: (previous slide) h(l+1) 0 (LueNw)uw) Wl”h(l)),VI €{0,..,L—1}
if we rewrite: h(l+1) 0(QueNw) W“h(l) + Blh,(]l)),‘v’l €{0,..,L—1}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65

GNN vs. CNN

Convolutional neural network (CNN) layer with
3x3 filter:

Image Graph

B®

GNN formulation: K{*Y = (W, SueNe) ey T B,hM),vi € {0,..,L — 13}

CNN formulation: h§ ™ = 0/(Zenwy WhY + Bihi), Vi € {0, ..., L — 1}

Key difference: We can learn different W* for different “neighbor” u for pixel v on
the image. The reason is we can pick an order for the g neighbors using relative
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), ..., (3, 1)}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 66

GNN vs. CNN

Convolutional neural network (CNN) layer with
3x3 filter: Y aYa

Key difference: We can learn different W* for different “neighbor” u for pixel v on
the image. The reason is we can pick an order for the g neighbors using relative
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), ..., (3, 1)}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 68

[Attention is all you need. Vaswani et al., NeurlPS 2017]

Transformer

Transformer is one of the

MatMul
most popular
architectures that , ’

L
Scaled Dot-Product

achieves great %JT r%ﬂ
performance in many ()) BT

(. J
Positional Positional
. Encoding ®_(>_® Encoding Tr ((
sequence modeling tasks. ""Eg =" ol
f

—

Q K VvV

—

Key component: self-attention

Every token/word attends to all the other tokens/words via
matrix calculation.

12/6/18

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 69

Transformer

A general definition of attention:

Given a set of vector values, and a vector query, attention is a technique to
compute a weighted sum of the values, dependent on the query.

Each token/word has a value vector and a query vector. The value
vector can be seen as the representation of the token/word. We use
the query vector to calculate the attention score (weights in the
weighted sum).

@)
— 2. r— @
O) - e Y) — -
= - ‘ D -, = { Q a
o £ £ 38 , 0 O ® 5 D e £ £ 8 , 0 © 0 5 B
K — c © — B] @ @© - [t N - c b= t = - o © 3y =
F @ T O£ v o2 = 8 = F @ T 0 £ v o= = & =
% b
ﬁ — 0 - Z': ._"J — 0 —— =
o 8 c 2 . & 8 [b o Ec o 18 8 0 L
— e T O£ » & = = 8 = —F @8 T o<l o= =8 =

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 70

A nice blog plot for this:

GNN vs. Transformer

Since each word attends to all the other @\
words, the computation graph of a "t
transformer layer is identical to that of a GNN

on the fully-connected “word"” graph. am @ @ student

d Stanford

Text (Complete) Graph

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 71

10/7/21

https://towardsdatascience.com/transformers-are-graph-neural-networks-bca9f75412aa

Summary

In this lecture, we introduced

|dea for Deep Learning for Graphs
Multiple layers of embedding transformation

At every layer, use the embedding at previous layer as
the input
Aggregation of neighbors and self-embeddings

Graph Convolutional Network
Mean aggregation; can be expressed in matrix form

GNN is a general architecture
CNN can be viewed as a special GNN

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 72

