Skip to main content

Advertisement

Log in

Psychological Stress Phenocopies Brain Mitochondrial Dysfunction and Motor Deficits as Observed in a Parkinsonian Rat Model

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Psychological distress is a public health issue as it contributes to the development of human diseases including neuropathologies. Parkinson’s disease (PD), a chronic, progressive neurodegenerative disorder, is caused by multiple factors including aging, mitochondrial dysfunction, and/or stressors. In PD, a substantial loss of substantia nigra (SN) neurons leads to rigid tremors, bradykinesia, and chronic fatigue. Several studies have reported that the hypothalamic-pituitary-adrenal (HPA) axis is altered in PD patients, leading to an increase level of cortisol which contributes to neurodegeneration and oxidative stress. We hypothesized that chronic psychological distress induces PD-like symptoms and promotes neurodegeneration in wild-type (WT) rats and exacerbates PD pathology in PINK1 knockout (KO) rats, a well-validated animal model of PD. We measured the bioenergetics profile (oxidative phosphorylation and glycolysis) in the brain by employing an XF24e Seahorse Extracellular Flux Analyzer in young rats subjected to predator-induced psychological distress. In addition, we analyzed anxiety-like behavior, motor function, expression of antioxidant enzymes, mitochondrial content, and neurotrophic factors brain-derived neurotrophic factor (BDNF) in the brain. Overall, we observed that psychological distress diminished up to 50% of mitochondrial respiration and glycolysis in the prefrontal cortex (PFC) derived from both WT and PINK1-KO rats. Mechanistically, the level of antioxidant proteins, mitochondrial content, and BDNF was significantly altered. Finally, psychological distress robustly induced anxiety and Parkinsonian symptoms in WT rats and accelerated certain symptoms of PD in PINK1-KO rats. For the first time, our collective data suggest that psychological distress can phenocopy several aspects of PD neuropathology, disrupt brain energy production, as well as induce ataxia-like behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data of this study are available from the corresponding authors.

References

  1. Sulzer D, Surmeier DJ (2014) Neuronal vulnerability, pathogenesis and Parkinson’s disease. Mov Disord 28:41–50. https://doi.org/10.1002/mds.25095.Neuronal

    Article  Google Scholar 

  2. Willard AM, Bouchard RS, Gittis AH (2015) Differential degradation of motor deficits during gradual dopamine depletion with 6-hydroxydopamine in mice. Neuroscience 301:254–267. https://doi.org/10.1016/j.physbeh.2017.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hurtig HI, Trojanowski JQ, Galvin J et al (2000) Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology 54:1916–1921. https://doi.org/10.1212/wnl.54.10.1916

    Article  CAS  PubMed  Google Scholar 

  4. Narayanan NS, Rodnitzky RL, Uc E (2013) Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease. Rev Neurosci 24:1–17. https://doi.org/10.1515/revneuro-2013-0004.Prefrontal

    Article  Google Scholar 

  5. Herz DM, Siebner HR, Hulme OJ, Florin E, Christensen MS, Timmermann L (2014) Levodopa reinstates connectivity from prefrontal to premotor cortex during externally paced movement in Parkinson’ s disease. Neuroimage 90:15–23. https://doi.org/10.1016/j.neuroimage.2013.11.023

    Article  CAS  PubMed  Google Scholar 

  6. Poewe W, Seppi K, Tanner CM et al (2017) Parkinson disease. Nature 3:1–21. https://doi.org/10.1038/nrdp.2017.13

    Article  Google Scholar 

  7. Valente EM, Salvi S, Ialongo T, Marongiu R, Elia AE, Caputo V, Romito L, Albanese A et al (2004) PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol 56:336–341. https://doi.org/10.1002/ana.20256

    Article  CAS  PubMed  Google Scholar 

  8. Das Banerjee T, Dagda RY, Dagda M, Chu CT, Rice M, Vazquez-Mayorga E, Dagda RK (2017) PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA. J Neurochem 142:545–559. https://doi.org/10.1111/jnc.14083

    Article  CAS  PubMed  Google Scholar 

  9. Sekine S, Youle RJ (2018) PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biol 16:1–12. https://doi.org/10.1186/s12915-017-0470-7

    Article  CAS  Google Scholar 

  10. Dodson MW, Guo M (2007) Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Curr Opin Neurobiol 17:331–337. https://doi.org/10.1016/j.conb.2007.04.010

    Article  CAS  PubMed  Google Scholar 

  11. Creed RB, Goldberg MS (2018) New developments in genetic rat models of Parkinson’s disease. Mov Disord 33:717–729. https://doi.org/10.1002/mds.27296

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dave KD, De Silva S, Sheth NP et al (2014) Phenotypic characterization of recessive gene knockout rat models of Parkinson’s disease. Neurobiol Dis 70:190–203. https://doi.org/10.1016/j.nbd.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  13. Kyser TL, Dourson AJ, McGuire JL et al (2019) Characterization of motor and non-motor behavioral alterations in the Dj-1 (PARK7) knockout rat. J Mol Neurosci 1:298–311. https://doi.org/10.1007/s12031-019-01358-0

    Article  CAS  Google Scholar 

  14. Grant LM, Kelm-Nelson CA, Hilby BL, Blue KV, Paul Rajamanickam ES, Pultorak JD, Fleming SM, Ciucci MR (2015) Evidence for early and progressive ultrasonic vocalization and oromotor deficits in a PINK1 gene knockout rat model of Parkinson’s disease. J Neurosci Res 93:1713–1727. https://doi.org/10.1002/jnr.23625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marquis JM, Lettenberger SE, Kelm-Nelsona CA (2020) Early-onset Parkinsonian behaviors in female Pink1−/− rats. Behav Brain Res 377:1–15. https://doi.org/10.1016/j.bbr.2019.112175

    Article  CAS  Google Scholar 

  16. Ren X, Hinchie A, Swomley A, Powell DK, Butterfield DA (2019) Profiles of brain oxidative damage, ventricular alterations, and neurochemical metabolites in the striatum of PINK1 knockout rats as functions of age and gender: relevance to Parkinson disease. Free Radic Biol Med 143:146–152. https://doi.org/10.1016/j.freeradbiomed.2019.08.008

    Article  CAS  PubMed  Google Scholar 

  17. Gemechu JM, Sharma A, Yu D, Xie Y, Merkel OM, Moszczynska A (2018) Characterization of dopaminergic system in the striatum of young adult Park2 −/− knockout rats. Sci Rep 8:1–19. https://doi.org/10.1038/s41598-017-18526-0

    Article  CAS  Google Scholar 

  18. Stauch KL, Villeneuve LM, Purnell PR, Ottemann BM, Emanuel K, Fox HS (2016) Loss of Pink1 modulates synaptic mitochondrial bioenergetics in the rat striatum prior to motor symptoms: concomitant complex I respiratory defects and increased complex II-mediated respiration. Proteomics Clin Appl 10:1205–1217. https://doi.org/10.1002/prca.201600005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferris CF, Morrison TR, Iriah S, Malmberg S, Kulkarni P, Hartner JC, Trivedi M (2018) Evidence of neurobiological changes in the presymptomatic PINK1 knockout rat. J Park Dis 8:281–301. https://doi.org/10.3233/JPD-171273

    Article  CAS  Google Scholar 

  20. Villeneuve LM, Purnell PR, Boska MD, Fox HS (2016) Early expression of Parkinson’s disease-related mitochondrial abnormalities in PINK1 knockout rats. Mol Neurobiol 53:171–186. https://doi.org/10.1007/s12035-014-8927-y

    Article  CAS  PubMed  Google Scholar 

  21. Creed RB, Menalled L, Casey B, Dave KD, Janssens HB, Veinbergs I, van der Hart M, Rassoulpour A et al (2019) Basal and evoked neurotransmitter levels in Parkin, DJ-1, PINK1 and LRRK2 knockout rat striatum. Neuroscience 409:169–179. https://doi.org/10.1016/j.neuroscience.2019.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhi L, Qin Q, Muqeem T, Seifert EL, Liu W, Zheng S, Li C, Zhang H (2018) Loss of PINK1 causes age-dependent decrease of dopamine release and mitochondrial dysfunction. Neurobiol Aging 75:1–10. https://doi.org/10.1016/j.neurobiolaging.2018.10.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Borgonovo J, Allende-Castro C, Laliena A et al (2017) Changes in neural circuitry associated with depression at pre-clinical, pre-motor and early motor phases of Parkinson’s disease. Parkinsonism Relat Disord 35:17–24. https://doi.org/10.1016/j.parkreldis.2016.11.009

    Article  PubMed  Google Scholar 

  24. Wang Y, Liu H, Du X et al (2017) Association of low serum BDNF with depression in patients with Parkinson’s disease. Parkinsonism Relat Disord 41:73–78. https://doi.org/10.1016/j.parkreldis.2017.05.012.This

    Article  PubMed  Google Scholar 

  25. Scalzo P, Kummer A, Bretas TL et al (2010) Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’ s disease. J Neurol 257:540–545. https://doi.org/10.1007/s00415-009-5357-2

    Article  CAS  PubMed  Google Scholar 

  26. Smith AD, Castro SL, Zigmond MJ (2002) Stress-induced Parkinson’ s disease: a working hypothesis. Physiol Behav 77:527–531. https://doi.org/10.1016/S0031-9384(02)00939-3

    Article  CAS  PubMed  Google Scholar 

  27. Fontoura JL, Baptista C, Pedroso FDB et al (2017) Depression in Parkinson’s disease: the contribution from animal studies. Parkinsons Dis 2017:1–8. https://doi.org/10.1155/2017/9124160

    Article  CAS  Google Scholar 

  28. Vargas-Caraveo A, Perez-Ishiwara DG, Martinez-Martinez A (2015) Chronic psychological distress as an inducer of microglial activation and leukocyte recruitment into the area postrema. Neuroimmunomodulation:1–11. https://doi.org/10.1159/000369350

  29. McEwen BS, Nasca C, Gray JD (2016) Stress effects on neuronal structure: hippocampus , amygdala, and prefrontal cortex. Neuropsychopharmacology 41:3–23. https://doi.org/10.1038/npp.2015.171

    Article  CAS  PubMed  Google Scholar 

  30. Hemmerle AM, Dickerson JW, Herman JP, Seroogy KB (2014) Stress exacerbates experimental Parkinson’s disease. Mol Psychiatry 19:638–640. https://doi.org/10.1038/mp.2013.108

    Article  CAS  PubMed  Google Scholar 

  31. Smith LK, Jadavji NM, Colwell KL, Katrina Perehudoff S, Metz GA (2008) Stress accelerates neural degeneration and exaggerates motor symptoms in a rat model of Parkinson’s disease. Eur J Neurosci 27:2133–2146. https://doi.org/10.1111/j.1460-9568.2008.06177.x

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sierra-Fonseca JA, Gosselink KL (2018) Tauopathy and neurodegeneration: a role for stress. Neurobiol Stress 9:105–112. https://doi.org/10.1016/j.ynstr.2018.08.009

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mejia-Carmona GE, Gosselink KL, Pérez-Ishiwara G, Martínez-Martínez A (2015) Oxidant/antioxidant effects of chronic exposure to predator odor in prefrontal cortex, amygdala, and hypothalamus. Mol Cell Biochem 406:121–129. https://doi.org/10.1007/s11010-015-2430-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grigoruţă M, Vargas-Caraveo A, Vázquez-Mayorga E et al (2018) Blood mononuclear cells as speculum of emotional stress analyzed by synchrotron infrared spectroscopy and a nootropic drug. Spectrochim Acta - A Mol Biomol Spectrosc 204:475–483. https://doi.org/10.1016/j.saa.2018.06.075

    Article  CAS  PubMed  Google Scholar 

  35. Mejia-Carmona GE, Gosselink KL, de la Rosa LA et al (2014) Evaluation of antioxidant enzymes in response to predator odor stress in prefrontal cortex and amygdala. Neurochem J 8:125–128. https://doi.org/10.1134/S181971241402007X

    Article  CAS  Google Scholar 

  36. Höschl C, Hajek T (2001) Hippocampal damage mediated by corticosteroids — a neuropsychiatric research challenge. Eur Arch Psychiatry Clin Neurosci 251:81–88. https://doi.org/10.1007/bf03035134

    Article  Google Scholar 

  37. Zhang B, Zhang Y, Wu W, Xu T, Yin Y, Zhang J, Huang D, Li W (2017) Chronic glucocorticoid exposure activates BK-NLRP1 signal involving in hippocampal neuron damage. J Neuroinflammation 14:1–13. https://doi.org/10.1186/s12974-017-0911-9

    Article  CAS  Google Scholar 

  38. Herrero M-T, Estrada C, Maatouk L, Vyas S (2015) Inflammation in Parkinson’s disease: role of glucocorticoids. Front Neuroanat 9:1–12. https://doi.org/10.3389/fnana.2015.00032

    Article  CAS  Google Scholar 

  39. Kilkenny C, Browne WJ, Cuthill IC et al (2010) Animal research: reporting in vivo experiments: the ARRIVE guidelines. PLoS Biol 8:1–5. https://doi.org/e1000412. https://doi.org/10.1371/journal.pbio.1000412

    Article  CAS  Google Scholar 

  40. Dielenberg RA, McGregor IS (2001) Defensive behavior in rats towards predatory odors: a review. Neurosci Biobehav Rev 25:597–609. https://doi.org/10.1016/S0149-7634(01)00044-6

    Article  CAS  PubMed  Google Scholar 

  41. Rozas G, Labandeira García JL (1997) Drug-free evaluation of rat models of parkinsonism and nigral grafts using a new automated rotarod test. Brain Res 749:188–199. https://doi.org/10.1016/S0006-8993(96)01162-6

    Article  CAS  PubMed  Google Scholar 

  42. Carter RJ, Morton JA, Dunnett SB (2001) Motor coordination and balance in rodents. Curr Protoc Neurosci:1–14. https://doi.org/10.1002/0471142301.ns0812s15

  43. Maurissen JPJ, Marable BR, Andrus AK, Stebbins KE (2003) Factors affecting grip strength testing. Neurotoxicol Teratol 25:543–553. https://doi.org/10.1016/S0892-0362(03)00073-4

    Article  CAS  PubMed  Google Scholar 

  44. Cabe PA, Tilson HA, Mitchell CL, Dennis R (1978) A simple recording grip strength device. Pharmacol Biochem Behav 8:101–102. https://doi.org/10.1016/0091-3057(78)90131-4

    Article  CAS  PubMed  Google Scholar 

  45. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edition. Academic Press, Elsevier.

  46. Fried NT, Moffat C, Seifert EL, Oshinsky ML (2014) Functional mitochondrial analysis in acute brain sections from adult rats reveals mitochondrial dysfunction in a rat model of migraine. Am J Phys Cell Phys 307:1017–1030. https://doi.org/10.1152/ajpcell.00332.2013

    Article  CAS  Google Scholar 

  47. Giguère N, Delignat-Lavaud B, Herborg F et al (2019) Increased vulnerability of nigral dopamine neurons after expansion of their axonal arborization size through D2 dopamine receptor conditional knockout. PLoS Genet 15:1–26. https://doi.org/10.1371/journal.pgen.1008352

    Article  CAS  Google Scholar 

  48. Callio J, Oury TD, Chu CT (2005) Manganese superoxide dismutase protects against 6- hydroxydopamine injury in mouse brains. J Biol Chem 280:18536–18542. https://doi.org/10.1038/jid.2014.371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xavier LL, Viola GG, Ferraz AC, da Cunha C, Deonizio JM, Netto CA, Achaval M (2005) A simple and fast densitometric method for the analysis of tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and in the ventral tegmental area. Brain Res Protocol 16:58–64. https://doi.org/10.1016/j.brainresprot.2005.10.002

    Article  CAS  Google Scholar 

  50. Salvatore MF, McInnis TR, Cantu MA, Apple DM, Pruett BS (2019) Tyrosine hydroxylase inhibition in substantia nigra decreases movement frequency. Mol Neurobiol 56:2728–2740. https://doi.org/10.1007/s12035-018-1256-9

    Article  CAS  PubMed  Google Scholar 

  51. Kozina EA, Khakimova GR, Khaindrava VG et al (2014) Tyrosine hydroxylase expression and activity in nigrostriatal dopaminergic neurons of MPTP-treated mice at the presymptomatic and symptomatic stages of parkinsonism. J Neurol Sci 340:198–207. https://doi.org/10.1016/j.jns.2014.03.028

    Article  CAS  PubMed  Google Scholar 

  52. Mulcahy P, O’Doherty A, Paucard A et al (2012) Development and characterisation of a novel rat model of Parkinson’s disease induced by sequential intranigral administration of AAV-α-synuclein and the pesticide, rotenone. Neuroscience 203:170–179. https://doi.org/10.1016/j.neuroscience.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  53. Zhang H, Zhao Y, Wang Z (2015) Chronic corticosterone exposure reduces hippocampal astrocyte structural plasticity and induces hippocampal atrophy in mice. Neurosci Lett 592:76–81. https://doi.org/10.1016/j.neulet.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  54. Agnihotri SK, Sun L, Yee BK, Shen R, Akundi RS, Zhi L, Duncan MJ, Cass WA et al (2019) PINK1 deficiency is associated with increased deficits of adult hippocampal neurogenesis and lowers the threshold for stress-induced depression in mice. Behav Brain Res 363:161–172. https://doi.org/10.1016/j.bbr.2019.02.006

    Article  CAS  PubMed  Google Scholar 

  55. Deng H, Le W, Shahed J et al (2008) Mutation analysis of the parkin and PINK1 genes in American Caucasian early-onset Parkinson disease families. Neurosci Lett 430:18–22. https://doi.org/10.1016/j.neulet.2007.10.018

    Article  CAS  PubMed  Google Scholar 

  56. Pfau ML, Russo SJ (2015) Peripheral and central mechanisms of stress resilience. Neurobiol Stress 1:66–79. https://doi.org/10.1016/j.ynstr.2014.09.004

    Article  PubMed  Google Scholar 

  57. Lupien SJ, De Leon M, De Santi S et al (1998) Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci 1:69–73. https://doi.org/10.1038/271

    Article  CAS  PubMed  Google Scholar 

  58. Lara VP, Caramelli P, Teixeira AL et al (2013) High cortisol levels are associated with cognitive impairment no-dementia (CIND) and dementia. Clin Chim Acta 423:18–22. https://doi.org/10.1016/j.cca.2013.04.013

    Article  CAS  PubMed  Google Scholar 

  59. Hartmann A, Veldhuis JD, Deuschle M et al (1997) Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: ultradian secretory pulsatility and diurnal variation. Neurobiol Aging 18:285–289. https://doi.org/10.1016/S0197-4580(97)80309-0

    Article  CAS  PubMed  Google Scholar 

  60. Bellomo G, Santambrogio L, Fiacconi M, Scarponi AM, Ciuffetti G (1991) Plasma profiles of adrenocorticotropic hormone, cortisol, growth hormone and prolactin in patients with untreated Parkinson’s disease. J Neurol 238:19–22. https://doi.org/10.1007/BF00319704

    Article  CAS  PubMed  Google Scholar 

  61. Djamshidian A, O’Sullivan SS, Papadopoulos A et al (2011) Salivary cortisol levels in Parkinson’s disease and its correlation to risk behaviour. J Neurol Neurosurg Psychiatry 82:1107–1111. https://doi.org/10.1136/jnnp.2011.245746

    Article  PubMed  PubMed Central  Google Scholar 

  62. Volpi R, Caffarra P, Boni S et al (1997) ACTH/cortisol involvement in the serotonergic disorder affecting the parkinsonian brain. Neuropsychobiology 35:73–78. https://doi.org/10.1159/000119394

    Article  CAS  PubMed  Google Scholar 

  63. Hoyer S (1982) The young-adult and normally aged brain. Its blood flow and oxidative metabolism. A review—part I. Geriatr Arch Gerontol 1:101–116. https://doi.org/10.1016/0167-4943(82)90021-8

    Article  CAS  Google Scholar 

  64. Kayser E, Sedensky MM, Morgan PG (2016) Region-specific defects of respiratory capacities in the Ndufs4 (KO) mouse brain. PLoS One 4:1–18. https://doi.org/10.1371/journal.pone.0148219

    Article  CAS  Google Scholar 

  65. Yin F, Sancheti H, Patil I, Cadenas E (2017) Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radic Biol Med 100:108–122. https://doi.org/10.1016/j.freeradbiomed.2016.04.200.Energy

    Article  Google Scholar 

  66. Lee J-K, Tran T, Tansey MG (2009) Neuroinflammation and Parkinson’s disease. J NeuroImmune Pharmacol 4:419–429. https://doi.org/10.1007/978-1-4614-5836-4_6

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cattaneo A, Cattane N, Begni V, Pariante CM, Riva MA (2016) The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Transl Psychiatry 6:1–10. https://doi.org/10.1038/tp.2016.214

    Article  CAS  Google Scholar 

  68. Sharma N, Rao SP, Kalivendi SV et al (2019) The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: role of oxidative stress mediated downregulation of DJ-1 in Parkinson’s disease. Free Radic Biol Med 135:28–37. https://doi.org/10.1016/j.freeradbiomed.2019.02.014

    Article  CAS  PubMed  Google Scholar 

  69. Chandran JS, Lin X, Zapata A, Höke A, Shimoji M, Moore SO, Galloway MP, Laird FM et al (2008) Progressive behavioral deficits in DJ-1-deficient mice are associated with normal nigrostriatal function. Neurobiol Dis 29:505–514. https://doi.org/10.1016/j.nbd.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  70. Wolf RC, Vasic N, Schönfeldt-Lecuona C et al (2007) Dorsolateral prefrontal cortex dysfunction in presymptomatic Huntington’s disease: evidence from event-related fMRI. Brain 130:2845–2857. https://doi.org/10.1093/brain/awm210

    Article  PubMed  Google Scholar 

  71. McEwen BS, Nasca C, Gray JD (2016) Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology 41:3–23. https://doi.org/10.1038/npp.2015.171

    Article  CAS  PubMed  Google Scholar 

  72. Dagda RK, Cherra SJ, Kulich SM et al (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284:13843–13855. https://doi.org/10.1074/jbc.M808515200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lakshminarasimhan H, Chattarji S (2012) Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala. PLoS One 7:1–6. https://doi.org/10.1371/journal.pone.0030481

    Article  CAS  Google Scholar 

  74. Surmeier DJ, Guzman JN, Sanchez-Padilla J, Goldberg JA (2010) What causes the death of dopaminergic neurons in Parkinson’s disease? Prog Brain Res 183:59–77. https://doi.org/10.1016/S0079-6123(10)83004-3

    Article  CAS  PubMed  Google Scholar 

  75. Heeman B, Van Den Haute C, Aelvoet S et al (2011) Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. J Cell Sci 124:1115–1125. https://doi.org/10.1242/jcs.078303

    Article  CAS  PubMed  Google Scholar 

  76. Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K, Downward J, Latchman DS et al (2009) PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 33:627–638. https://doi.org/10.1016/j.molcel.2009.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maggioli E, Mcarthur S, Mauro C et al (2016) Estrogen protects the blood–brain barrier from inflammation-induced disruption and increased lymphocyte trafficking. Brain Behav Immun 51:212–222. https://doi.org/10.1016/j.bbi.2015.08.020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Robert Renden, Ángel G. Diaz-Sanchez, and Gilberto Mercado Mercado for their valuable technical support and constructive criticisms.

Funding

This study was funded by the Pennington Foundation (Nevada), by National Institutes of Health (NIH) grant R01 NS105783, and by Consejo Nacional de Ciencia y Tecnología (CONACYT) 254483, 2833, and MG-fellowship by CONACYT.

Author information

Authors and Affiliations

Authors

Contributions

GM performed the experiments. GM, DRK, MMA and DRY designed the study. DRY provided technical assistance. GM, DRK and MMA analyzed the data and wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Alejandro Martínez-Martínez or Ruben K. Dagda.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethical Approval and Consent to Participate

All animal experiments were performed according the ARRIVE guidelines and by using an animal protocol (#572) that was approved by the IACUC at the University of Nevada, Reno, USA.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

7-month PINK1-KO rats show sever motor disfunction (a) grip strength of hindlimbs, (b) number of hindlimbs slips in the 2 cm beam balance, n = 8 WT rats and 15 PINK1-KO rats. Data are mean ± SEM. *p ≤ 0.05, **p ≤ 0.01, unpaired t-test. (PNG 113 kb)

High resolution image (TIF 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoruţă, M., Martínez-Martínez, A., Dagda, R.Y. et al. Psychological Stress Phenocopies Brain Mitochondrial Dysfunction and Motor Deficits as Observed in a Parkinsonian Rat Model. Mol Neurobiol 57, 1781–1798 (2020). https://doi.org/10.1007/s12035-019-01838-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01838-9

Keywords

Navigation