Skip to main content

High-Grade Follicular Cell-Derived Non-Anaplastic Thyroid Carcinoma

  • Chapter
  • First Online:
The Bethesda System for Reporting Thyroid Cytopathology

Abstract

High-grade follicular cell-derived non-anaplastic thyroid carcinoma (HGFDTC) comprises poorly differentiated thyroid carcinomas (PDTC) and differentiated high-grade thyroid carcinomas (DHGTC). These are rare malignancies, accounting for 1–6.7% of all thyroid cancers. The age at presentation is between 18 and 63 years, with a slight female predilection. They have an aggressive clinical behavior intermediate between that of the well differentiated thyroid carcinomas and undifferentiated (anaplastic) thyroid carcinoma. Histologically, the hallmark of HGFDTC is the presence of high mitotic activity and tumor necrosis in a thyroid carcinoma of follicular cell origin characterized by a papillary and/or follicular growth pattern (for DHGTC) or by an insular, solid, or trabecular growth pattern (for PDTC). Cytologically, DHGTC shows classic papillary or follicular architecture associated with necrosis or mitosis, while PDTCs are difficult to recognize because their cytomorphologic features overlap with those of follicular neoplasms. Immunostains for keratins and thyroid markers (thyroglobulin, TTF-1, and PAX8) are usually expressed in the tumor cells. BRAF V600E, RAS, and TERT promoter are frequently mutated. Because of its poor clinical prognosis, HGFDTC is managed more aggressively than well differentiated thyroid carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tallini, et al. Follicular derived carcinomas, high-grade. In: Ghossein RA, Baloch ZB, Erickson LA, editors. World Health Organization Classification of Tumours: pathology and genetics of tumours of endocrine organs. Lyon: IARC Press; 2022.

    Google Scholar 

  2. Akslen LA, LiVolsi VA. Prognostic significance of histologic grading compared with subclassification of papillary thyroid carcinoma. Cancer. 2000;88:1902–8.

    Article  CAS  PubMed  Google Scholar 

  3. Carcangiu ML, Zampi G, Rosai J. Poorly differentiated (“insular”) thyroid carcinoma. A reinterpretation of Langhans’ “wuchernde struma”. Am J Surg Pathol. 1984;8(9):655–68.

    Article  CAS  PubMed  Google Scholar 

  4. Langhans T. Uber die epithelialen formen der malignen struma. Virchows Arch. 1907;189:69–188.

    Article  Google Scholar 

  5. Volante M, Landolfi S, Chiusa L, et al. Poorly differentiated carcinomas of the thyroid with trabecular, insular, and solid patterns: a clinicopathologic study of 183 patients. Cancer. 2004;100(5):950–7.

    Article  PubMed  Google Scholar 

  6. Hiltzik D, Carlson DL, Tuttle RM, et al. Poorly differentiated thyroid carcinomas defined on the basis of mitosis and necrosis: a clinicopathologic study of 58 patients. Cancer. 2006;106(6):1286–95.

    Article  PubMed  Google Scholar 

  7. Bai S, Baloch ZW, Samulski TD, Montone KT, LiVolsi VA. Poorly differentiated oncocytic (Hürthle cell) follicular carcinoma: an institutional experience. Endocr Pathol. 2015;26(2):164–9.

    Article  CAS  PubMed  Google Scholar 

  8. Dettmer M, Schmitt A, Steinert H, Moch H, Komminoth P, Perren A. Poorly differentiated oncocytic thyroid carcinoma--diagnostic implications and outcome. Histopathology. 2012;60(7):1045–51.

    Article  PubMed  Google Scholar 

  9. Xu B, David J, Dogan S, et al. Primary high-grade non-anaplastic thyroid carcinoma: a retrospective study of 364 cases. Histopathology. 2022;80(2):322–37.

    Article  PubMed  Google Scholar 

  10. Baloch ZW, Asa SL, Barletta JA, et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol. 2022;33(1):27–63.

    Article  PubMed  Google Scholar 

  11. Decaussin M, Bernard MH, Adeleine P, et al. Thyroid carcinomas with distant metastases: a review of 111 cases with emphasis on the prognostic significance of an insular component. Am J Surg Pathol. 2002;26(8):1007–15.

    Article  PubMed  Google Scholar 

  12. Bedrossian CWM, Martinez F, Silverberg AB. Fine needle aspiration. In: Gnepp DR, editor. Pathology of the head and neck. New York: Churchill Livingstone; 1988. p. 25–99.

    Google Scholar 

  13. Flynn SD, Forman BH, Stewart AF, et al. Poorly differentiated (“insular”) carcinoma of the thyroid gland: an aggressive subset of differentiated thyroid neoplasms. Surgery. 1988;104(6):963–70.

    CAS  PubMed  Google Scholar 

  14. Pietribiasi F, Sapino A, Papotti M, et al. Cytologic features of poorly differentiated ‘insular’ carcinoma of the thyroid, as revealed by fine-needle aspiration biopsy. Am J Clin Pathol. 1990;94:687–92.

    Article  CAS  PubMed  Google Scholar 

  15. Sironi M, Collini P, Cantaboni A. Fine needle aspiration cytology of insular thyroid carcinoma: a report of four cases. Acta Cytol. 1992;36:435–9.

    CAS  PubMed  Google Scholar 

  16. Guiter GE, Auger M, Ali SZ, et al. Cytopathology of insular carcinoma of the thyroid. Cancer Cytopathol. 1999;87:196–202.

    Article  CAS  Google Scholar 

  17. Nguyen GK, Akin M-RM. Cytopathology of insular carcinoma of the thyroid. Diagn Cytopathol. 2001;25:325–30.

    Article  CAS  PubMed  Google Scholar 

  18. Oertel YC, Miyahara-Felipe L. Cytologic features of insular carcinoma of the thyroid: a case report. Diagn Cytopathol. 2006;34(8):572–5.

    Article  PubMed  Google Scholar 

  19. Zakowski MF, Schlesinger K, Mizrachi HH. Cytologic features of poorly differentiated “insular” carcinoma of the thyroid. A case report. Acta Cytol. 1992;36(4):523–6.

    CAS  PubMed  Google Scholar 

  20. Barwad A, Dey P, Nahar Saikia U, et al. Fine needle aspiration cytology of insular carcinoma of thyroid. Diagn Cytopathol. 2012;40(Suppl 1):E43–7.

    Article  PubMed  Google Scholar 

  21. Kane SV, Sharma TP. Cytologic diagnostic approach to poorly differentiated thyroid carcinoma: a single-institution study. Cancer Cytopathol. 2015;123(2):82–91.

    Article  PubMed  Google Scholar 

  22. Purkait S, Agarwal S, Mathur SR, Jain D, Iyer VK. Fine needle aspiration cytology features of poorly differentiated thyroid carcinoma. Cytopathology. 2016;27(3):176–84.

    Article  CAS  PubMed  Google Scholar 

  23. Bongiovanni M, Bloom L, Krane JF, et al. Cytomorphologic features of poorly differentiated thyroid carcinoma. A multi-institutional analysis of 40 cases. Cancer Cytopathol. 2009;117(3):185–94.

    Article  Google Scholar 

  24. Saglietti C, Onenerk AM, Faquin WC, Sykiotis GP, Ziadi S, Bongiovanni M. FNA diagnosis of poorly differentiated thyroid carcinoma. A review of the recent literature. Cytopathology. 2017;28:467–74.

    Article  CAS  PubMed  Google Scholar 

  25. Nonaka D, Tang Y, Chiriboga L, et al. Diagnostic utility of thyroid transcription factors Pax8 and TTF-2 (FoxE1) in thyroid epithelial neoplasms. Mod Pathol. 2008;21(2):192–200.

    Article  CAS  PubMed  Google Scholar 

  26. Xu B, Ghossein. Poorly differentiated thyroid carcinoma. Semin Diagn Pathol. 2020;37(5):243–7.

    Article  PubMed  Google Scholar 

  27. Ibrahimpasic T, Ghossein R, Shah JP, Ganly I. Poorly differentiated carcinoma of the thyroid gland: current status and future prospects. Thyroid. 2019;29(3):311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–66.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ganly I, Makarov V, Deraje S, et al. Integrated genomic analysis of Hürthle cell cancer reveals oncogenic drivers, recurrent mitochondrial mutations, and unique chromosomal landscapes. Cancer Cell. 2018;34(2):256–270.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nikiforov YE. Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr Pathol. 2004;15(4):319–27.

    Article  CAS  PubMed  Google Scholar 

  31. Ricarte-Filho JC, Ryder M, Chitale DA, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69(11):4885–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Volante M, Rapa I, Gandhi M, et al. RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J Clin Endocrinol Metab. 2009;94(12):4735–41.

    Article  CAS  PubMed  Google Scholar 

  33. de la Fouchardière C, Decaussin-Petrucci M, Berthiller J, et al. Predictive factors of outcome in poorly differentiated thyroid carcinomas. Eur J Cancer. 2018;92:40–7.

    Article  PubMed  Google Scholar 

  34. Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88(11):5399–404.

    Article  CAS  PubMed  Google Scholar 

  35. Karunamurthy A, Panebianco F, Hsiao SJ, et al. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr Relat Cancer. 2016;23(4):295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Landa I, Ganly I, Chan TA, et al. Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J Clin Endocrinol Metab. 2013;98(9):E1562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu T, Wang N, Cao J, et al. The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene. 2014;33(42):4978–84.

    Article  CAS  PubMed  Google Scholar 

  38. Liu X, Bishop J, Shan Y, et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer. 2013;20(4):603–10.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dobashi Y, Sugimura H, Sakamoto A, et al. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn Mol Pathol. 1994;3(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  40. Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab. 2013;98(11):E1852–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kelly LM, Barila G, Liu P, et al. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci U S A. 2014;111(11):4233–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.

    Article  Google Scholar 

  43. Chou A, Fraser S, Toon CW, et al. A detailed clinicopathologic study of ALK-translocated papillary thyroid carcinoma. Am J Surg Pathol. 2015;39(5):652–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Eberhardt NL, Grebe SK, McIver B, Reddi HV. The role of the PAX8/PPARgamma fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol Cell Endocrinol. 2010;321(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  45. Raman P, Koenig RJ. Pax-8-PPAR-γ fusion protein in thyroid carcinoma. Nat Rev Endocrinol. 2014;10(10):616–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Santoro M, Papotti M, Chiappetta G, et al. RET activation and clinicopathologic features in poorly differentiated thyroid tumors. J Clin Endocrinol Metab. 2002;87(1):370–9.

    Article  CAS  PubMed  Google Scholar 

  47. Kohno T, Tabata J, Nakaoku T. REToma: a cancer subtype with a shared driver oncogene. Carcinogenesis. 2020;41(2):123–9.

    Article  CAS  PubMed  Google Scholar 

  48. Sanders EM Jr, LiVolsi VA, Brierley J, et al. An evidence-based review of poorly differentiated thyroid cancer. World J Surg. 2007;31(5):934–45.

    Article  PubMed  Google Scholar 

  49. Volante M, Lam AK, Papotti M, Tallini G. Molecular pathology of poorly differentiated and anaplastic thyroid cancer: what do pathologists need to know? Endocr Pathol. 2021;32(1):63–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the work in earlier editions of this chapter of Drs. Guido Fadda and William Faquin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Bongiovanni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bongiovanni, M., Allison, D., Lew, M., Cochand-Priollet, B. (2023). High-Grade Follicular Cell-Derived Non-Anaplastic Thyroid Carcinoma. In: Ali, S.Z., VanderLaan, P.A. (eds) The Bethesda System for Reporting Thyroid Cytopathology. Springer, Cham. https://doi.org/10.1007/978-3-031-28046-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28046-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28045-0

  • Online ISBN: 978-3-031-28046-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics