Skip to main content
Log in

Deep brain stimulation for Parkinson’s Disease: A Review and Future Outlook

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Parkinson’s Disease (PD) is a neurodegenerative disorder that manifests as an impairment of motor and non-motor abilities due to a loss of dopamine input to deep brain structures. While there is presently no cure for PD, a variety of pharmacological and surgical therapeutic interventions have been developed to manage PD symptoms. This review explores the past, present and future outlooks of PD treatment, with particular attention paid to deep brain stimulation (DBS), the surgical procedure to deliver DBS, and its limitations. Finally, our group’s efforts with respect to brain mapping for DBS targeting will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. “Michael J.Fox foundation for Parkinson’s research,” Michael J.Fox foundation. [Online]. Available: https://www.michaeljfox.org/understanding-parkinsons/i-have-got-what.php.

  2. Kogan M, McGuire M, Riley J, “Deep Brain Stimulation for Parkinson Disease.,” Neurosurg. Clin. N. Am., vol. 30, no. 2, pp. 137–146, Apr. 2019.

  3. Triarhou LC, “Dopamine and Parkinson’s Disease,” Madame Curie Bioscience Database, 2013. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK6271/.

  4. Massano J, Bhatia KP. Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harb Perspect Med. Jun. 2012;2(6):a008870–0. 

    Article  Google Scholar 

  5. Hayes MT, “Parkinson’s Disease and Parkinsonism,” Am. J. Med., vol. 132, no. 7, pp. 802–807, Jul. 2019.

  6. Chaudhuri KR, Healy DG, Schapira AHV. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 2006;5(3):235–45. 

    Article  Google Scholar 

  7. Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol Neurodegener. 2019;14(1):35. 

    Article  Google Scholar 

  8. Wakabayashi K, Tanji K, Mori F, Takahashi H, “The Lewy body in Parkinson’s disease: Molecules implicated in the formation and degradation of α-synuclein aggregates,” Neuropathology, vol. 27, no. 5, pp. 494–506, Oct. 2007.

  9. Brooks DJ, “Imaging Approaches to Parkinson Disease,” J. Nucl. Med., vol. 51, no. 4, pp. 596–609, Apr. 2010.

  10. Gazewood JD, Richards DR, Clebak K, “Parkinson disease: an update.,” Am. Fam. Physician, vol. 87, no. 4, pp. 267–273, Feb. 2013.

  11. NEWMAN EJ, “PREVALENCE AND DIAGNOSIS OF PARKINSON’S. DISEASE: A COMMUNITY STUDY,” University of Glasgow.

  12. Jenner P, “Treatment of the later stages of Parkinson’s disease - pharmacological approaches now and in the future,” Transl. Neurodegener., vol. 4, p. 3, Feb. 2015.

  13. Schlesinger I, Sinai A, Zaaroor M, “MRI-Guided Focused Ultrasound in Parkinson’s Disease: A Review,” Parkinsons. Dis., vol. 2017, p. 8124624, 2017.

  14. Lee DJ, Lozano AM. The Future of Surgical Treatments for Parkinson’s Disease. J Parkinsons Dis. 2018;8(s1):S79–83. 

    Article  Google Scholar 

  15. Rodriguez-Rojas R, et al., “Subthalamotomy for Parkinson’s disease: clinical outcome and topography of lesions.,” J. Neurol. Neurosurg. Psychiatry, vol. 89, no. 6, pp. 572–578, Jun. 2018.

  16. Spindola B, Leite MA, Orsini M, Fonoff E, Landeiro JA, Pessoa BL, “Ablative surgery for Parkinson’s disease: Is there still a role for pallidotomy in the deep brain stimulation era?,” Clin. Neurol. Neurosurg., vol. 158, pp. 33–39, Jul. 2017.

  17. Politis M, Lindvall O. Clinical application of stem cell therapy in Parkinson’s disease. BMC Med. 2012;10(1):1. 

    Article  Google Scholar 

  18. Daly JJ, Wolpaw JR, “Brain-computer interfaces in neurological rehabilitation.,” Lancet. Neurol., vol. 7, no. 11, pp. 1032–1043, Nov. 2008.

  19. Tinkhauser G, Pogosyan A, Tan H, Herz DM, Kuhn AA, Brown P, “Beta burst dynamics in Parkinson’s disease OFF and ON dopaminergic medication.,” Brain, vol. 140, no. 11, pp. 2968–2981, Nov. 2017.

  20. Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B, “Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys.,” Eur. J. Neurosci., vol. 5, no. 4, pp. 382–389, Apr. 1993.

  21. Khanna P, et al., “Neurofeedback Control in Parkinsonian Patients Using Electrocorticography Signals Accessed Wirelessly With a Chronic, Fully Implanted Device.,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 10, pp. 1715–1724, Oct. 2017.

  22. Boulay CB, Sachs AJ. “Brain-Computer Interfaces for Communication and Rehabilitation Using Intracortical Neuronal Activity from the Prefrontal Cortex and Basal Ganglia in Humans BT - Brain-Computer Interface Research: A State-of-the-Art Summary 4,” Guger C, Müller-Putz G, Allison B, editors. Cham: Springer International Publishing, 2015, pp. 19–27.

    Google Scholar 

  23. Deuschl G, et al., “A randomized trial of deep-brain stimulation for Parkinson’s disease.,” N. Engl. J. Med., vol. 355, no. 9, pp. 896–908, Aug. 2006.

  24. Hartwigsen G. The neurophysiology of language: Insights from non-invasive brain stimulation in the healthy human brain. Brain Lang. 2015;148:81–94. 

    Article  Google Scholar 

  25. Hogg E, Wertheimer J, Graner S, Tagliati M. Deep Brain Stimulation and Nonmotor Symptoms. ” Int Rev Neurobiol. 2017;134:1045–89. 

    Article  Google Scholar 

  26. Weaver FM, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. ” JAMA. Jan. 2009;301(1):63–73. 

    Article  MathSciNet  Google Scholar 

  27. Williams A, et al., “Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): a randomised, open-label trial,” Lancet. Neurol., vol. 9, no. 6, pp. 581–591, Jun. 2010.

  28. Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. ” Lancet Neurol. Jan. 2009;8(1):67–81. 

    Article  Google Scholar 

  29. Vidailhet M, et al., “Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia.,” N. Engl. J. Med., vol. 352, no. 5, pp. 459–467, Feb. 2005.

  30. Wichmann T, Bergman H, DeLong MR, “Basal ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research.,” J. Neural Transm., vol. 125, no. 3, pp. 419–430, Mar. 2018.

  31. Khan MS, Deng H. Design and Prototyping a Smart Deep Brain Stimulator: An Autonomous Neuro-Sensing and Stimulating Electrode System. IEEE Intell Syst. 2017;32(5):14–27. 

    Article  Google Scholar 

  32. Alomar S, King NKK, Tam J, Bari AA, Hamani C, Lozano AM. Speech and language adverse effects after thalamotomy and deep brain stimulation in patients with movement disorders: A meta-analysis. ” Mov Disord. Jan. 2017;32(1):53–63. 

    Article  Google Scholar 

  33. Fang JY, Tolleson C. The role of deep brain stimulation in Parkinson’s disease: an overview and update on new developments. ” Neuropsychiatr Dis Treat. 2017;13:723–32. 

    Article  Google Scholar 

  34. Amon A, Alesch F, “Systems for deep brain stimulation: review of technical features.,” J. Neural Transm., vol. 124, no. 9, pp. 1083–1091, Sep. 2017.

  35. Gimsa J, Habel B, Schreiber U, van Rienen U, Strauss U, Gimsa U, “Choosing electrodes for deep brain stimulation experiments - electrochemical considerations,” J. Neurosci. Methods, vol. 142, pp. 251–265, Apr. 2005.

  36. Morello ANDC, Beber BC, Fagundes VC, Cielo CA, Rieder CRM, “Dysphonia and Dysarthria in People With Parkinson’s Disease After Subthalamic Nucleus Deep Brain Stimulation: Effect of Frequency Modulation.,” J. Voice, Nov. 2018.

  37. Rossi M, Bruno V, Arena J, Cammarota Á, Merello M. Challenges in PD Patient Management After DBS: A Pragmatic Review. Mov Disord Clin Pract. May 2018;5(3):246–54. 

    Article  Google Scholar 

  38. Cyron D. Mental Side Effects of Deep Brain Stimulation (DBS) for Movement Disorders: The Futility of Denial. Front Integr Neurosci. Apr. 2016;10:17. 

    Article  Google Scholar 

  39. Butson CR, Maks CB, McIntyre CC, “Sources and effects of electrode impedance during deep brain stimulation,” Clin. Neurophysiol., vol. 117, no. 2, pp. 447–454, Feb. 2006.

  40. Medtronic. “Advanced Deep Brain Stimulation Therapy in Canada,” 2010. [Online]. Available: https://www.disabled-world.com/health/neurology/dbs.php.

  41. Arnulf I, et al., “Effect of low and high frequency thalamic stimulation on sleep in patients with Parkinson’s disease and essential tremor.,” J. Sleep Res., vol. 9, no. 1, pp. 55–62, Mar. 2000.

  42. Wagle Shukla A, Zeilman P, Fernandez H, Bajwa JA, Mehanna R, “DBS Programming: An Evolving Approach for Patients with Parkinson’s Disease,” Park. Dis., vol. 2017, p. 8492619, 2017.

  43. Koeglsperger T, Palleis C, Hell F, Mehrkens JH, Bötzel K. Deep Brain Stimulation Programming for Movement Disorders: Current Concepts and Evidence-Based Strategies. Front Neurol. May 2019;10:410. 

    Article  Google Scholar 

  44. Vallabhajosula S, et al., “Low-Frequency versus High-Frequency Subthalamic Nucleus Deep Brain Stimulation on Postural Control and Gait in Parkinson’s Disease: A Quantitative Study,” Brain Stimul., vol. 8, Oct. 2014.

  45. Benabid AL, Benazzouz A, Hoffmann D, Limousin P, Krack P, Pollak P. Long-term electrical inhibition of deep brain targets in movement disorders. ” Mov Disord. 1998;13(Suppl 3):119–25. 

    Google Scholar 

  46. HASSLER R, RIECHERT T, MUNDINGER F, UMBACH W, GANGLBERGER JA. “PHYSIOLOGICAL OBSERVATIONS IN STEREOTAXIC OPERATIONS IN EXTRAPYRAMIDAL MOTOR DISTURBANCES,” Brain, vol. 83, no. 2, pp. 337–350, Jun. 1960.

  47. Okun MS, Vitek JL, “Lesion therapy for Parkinson’s disease and other movement disorders: update and controversies.,” Mov. Disord., vol. 19, no. 4, pp. 375–389, Apr. 2004.

  48. Ramirez-Zamora A, Ostrem JL, “Globus Pallidus Interna or Subthalamic Nucleus Deep Brain Stimulation for Parkinson Disease: A Review.,” JAMA Neurol., vol. 75, no. 3, pp. 367–372, Mar. 2018.

  49. Adams JE, Hosobuchi Y, Fields HL, “Stimulation of internal capsule for relief of chronic pain.,” J. Neurosurg., vol. 41, no. 6, pp. 740–744, Dec. 1974.

  50. McInerney SJ, et al. Neurocognitive Predictors of Response in Treatment Resistant Depression to Subcallosal Cingulate Gyrus Deep Brain Stimulation. Front Hum Neurosci. Feb. 2017;11:74. 

    Article  Google Scholar 

  51. Boccard SGJ, et al., “Targeting the affective component of chronic pain: a case series of deep brain stimulation of the anterior cingulate cortex.,” Neurosurgery, vol. 74, no. 6, pp. 627–628, Jun. 2014.

  52. Mallory GW, et al., “The nucleus accumbens as a potential target for central poststroke pain.,” Mayo Clin. Proc., vol. 87, no. 10, pp. 1025–1031, Oct. 2012.

  53. Duncan GH, Bushnell MC, Marchand S, “Deep brain stimulation: a review of basic research and clinical studies.,” Pain, vol. 45, no. 1, pp. 49–59, Apr. 1991.

  54. Hécaen H, Talairach J, David M, Dell MB. “COAGULATIONS LIMITEES DU THALAMUS DANS LES ALGIES DU SYNDROME THALAMIQUE-RESULTATS THERAPEUTIQUES ET PHYSIOLOGIQUES,”. Rev Neurol (Paris), 81, 11, 917–31, 1949.

    Google Scholar 

  55. Odekerken VJJ, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. ” Lancet Neurol. Jan. 2013;12(1):37–44. 

    Article  Google Scholar 

  56. Follett KA, et al., “Pallidal versus Subthalamic Deep-Brain Stimulation for Parkinson’s Disease,” N. Engl. J. Med., vol. 362, no. 22, pp. 2077–2091, Jun. 2010.

  57. Odekerken VJJ, et al. “GPi vs STN deep brain stimulation for Parkinson disease: Three-year follow-up. ” Neurol. Feb. 2016;86(8):755–61.

    Article  Google Scholar 

  58. Xu F, Ma W, Huang Y, Qiu Z, Sun L. Deep brain stimulation of pallidal versus subthalamic for patients with Parkinson’s disease: a meta-analysis of controlled clinical trials. ” Neuropsychiatr Dis Treat. 2016;12:1435–44. 

    Google Scholar 

  59. Obeso JA, Olanow CW, Rodriguez-Oroz MC, Krack P, Kumar R, Lang AE. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. ” N Engl J Med. Sep. 2001;345(13):956–63. 

    Article  Google Scholar 

  60. Williams NR, Foote KD, Okun MS. “STN vs. GPi Deep Brain Stimulation: Translating the Rematch into Clinical Practice. ” Mov Disord Clin Pract. Apr. 2014;1(1):24–35.

    Article  Google Scholar 

  61. Plantinga BR, et al., “Individualized parcellation of the subthalamic nucleus in patients with Parkinson’s disease with 7T MRI.,” Neuroimage, vol. 168, pp. 403–411, Mar. 2018.

  62. Chandran AS, Bynevelt M, Lind CRP. Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation. ” J Neurosurg. Jan. 2016;124(1):96–105. 

    Article  Google Scholar 

  63. Wang Z, Luo X-G, Gao C. “Utility of susceptibility-weighted imaging in Parkinson’s disease and atypical Parkinsonian disorders,” Transl. Neurodegener., vol. 5, p. 17, Oct. 2016.

  64. Shamir RR, et al., “Microelectrode Recordings Validate the Clinical Visualization of Subthalamic-Nucleus Based on 7T Magnetic Resonance Imaging and Machine Learning for Deep Brain Stimulation Surgery.,” Neurosurgery, vol. 84, no. 3, pp. 749–757, Mar. 2019.

  65. Nowacki A, et al., “Using MDEFT MRI Sequences to Target the GPi in DBS Surgery,” PLoS One, vol. 10, no. 9, p. e0137868, Sep. 2015.

  66. Nolte IS, Gerigk L, Al-Zghloul M, Groden C, Kerl HU, “Visualization of the internal globus pallidus: sequence and orientation for deep brain stimulation using a standard installation protocol at 3.0 Tesla.,” Acta Neurochir. (Wien)., vol. 154, no. 3, pp. 481–494, Mar. 2012.

  67. Miyagi Y, Shima F, Sasaki T, “Brain shift: an error factor during implantation of deep brain stimulation electrodes.,” J. Neurosurg., vol. 107, no. 5, pp. 989–997, Nov. 2007.

  68. Tai C-H, et al., “Deep brain stimulation therapy for Parkinson’s disease using frameless stereotaxy: comparison with frame-based surgery.,” Eur. J. Neurol., vol. 17, no. 11, pp. 1377–1385, Nov. 2010.

  69. Starr PA, Martin AJ, Ostrem JL, Talke P, Levesque N, Larson PS, “Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy.,” J. Neurosurg., vol. 112, no. 3, pp. 479–490, Mar. 2010.

  70. Bot M, Bour L, de Bie RM, Contarino MF, Schuurman PR, van den Munckhof P. Can We Rely on Susceptibility-Weighted Imaging for Subthalamic Nucleus Identification in Deep Brain Stimulation Surgery? Neurosurgery. Mar. 2016;78(3):353–60. 

    Article  Google Scholar 

  71. Burchiel KJ, McCartney S, Lee A, Raslan AM, “Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording.,” J. Neurosurg., vol. 119, no. 2, pp. 301–306, Aug. 2013.

  72. Mirzadeh Z, Chapple K, Lambert M, Dhall R, Ponce FA, “Validation of CT-MRI fusion for intraoperative assessment of stereotactic accuracy in DBS surgery.,” Mov. Disord., vol. 29, no. 14, pp. 1788–1795, Dec. 2014.

  73. Priori A, Foffani G, Rossi L, Marceglia S, “Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations.,” Exp. Neurol., vol. 245, pp. 77–86, Jul. 2013.

  74. Zaidel A, Spivak A, Grieb B, Bergman H, Israel Z, “Subthalamic span of beta oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease.,” Brain, vol. 133, no. Pt 7, pp. 2007–2021, Jul. 2010.

  75. van Wijk BCM, et al., “Subthalamic nucleus phase-amplitude coupling correlates with motor impairment in Parkinson’s disease.,” Clin. Neurophysiol., vol. 127, no. 4, pp. 2010–2019, Apr. 2016.

  76. Horn A, Neumann W-J, Degen K, Schneider G-H, Kuhn AA, “Toward an electrophysiological ‘sweet spot’ for deep brain stimulation in the subthalamic nucleus.,” Hum. Brain Mapp., vol. 38, no. 7, pp. 3377–3390, Jul. 2017.

  77. Little S, et al., “Adaptive deep brain stimulation in advanced Parkinson disease.,” Ann. Neurol., vol. 74, no. 3, pp. 449–457, Sep. 2013.

  78. Fenoy AJ, Simpson RKJ, “Risks of common complications in deep brain stimulation surgery: management and avoidance.,” J. Neurosurg., vol. 120, no. 1, pp. 132–139, Jan. 2014.

  79. Bick SKB, et al., “Subthalamic Nucleus Deep Brain Stimulation Alters Prefrontal Correlates of Emotion Induction.,” Neuromodulation, vol. 20, no. 3, pp. 233–237, Apr. 2017.

  80. Jitkritsadakul O, Bhidayasiri R, Kalia SK, Hodaie M, Lozano AM, Fasano A, “Systematic review of hardware-related complications of Deep Brain Stimulation: Do new indications pose an increased risk?,” Brain Stimul., vol. 10, no. 5, pp. 967–976, Sep. 2017.

  81. Kuhn AA, Volkmann J, “Innovations in deep brain stimulation methodology.,” Mov. Disord., vol. 32, no. 1, pp. 11–19, Jan. 2017.

  82. Clausen J, “Ethical brain stimulation - neuroethics of deep brain stimulation in research and clinical practice.,” Eur. J. Neurosci., vol. 32, no. 7, pp. 1152–1162, Oct. 2010.

  83. Grill WM, “Safety considerations for deep brain stimulation: review and analysis.,” Expert Rev. Med. Devices, vol. 2, no. 4, pp. 409–420, Jul. 2005.

  84. Højlund A, Petersen MV, Sridharan KS, Østergaard K. Worsening of Verbal Fluency After Deep Brain Stimulation in Parkinson’s Disease: A Focused Review. Comput Struct Biotechnol J. Nov. 2016;15:68–74. 

    Article  Google Scholar 

  85. Picillo M, Vincos GB, Sammartino F, Lozano AM, Fasano A. Exploring risk factors for stuttering development in Parkinson disease after deep brain stimulation. ” Parkinsonism Relat Disord. May 2017;38:85–9. 

    Article  Google Scholar 

  86. Alonso F, Vogel D, Johansson J, Wårdell K, Hemm S. “Electric Field Comparison between Microelectrode Recording and Deep Brain Stimulation Systems-A Simulation Study,” Brain Sci., vol. 8, no. 2, p. 28, Feb. 2018.

  87. Ben-Haim S, Asaad WF, Gale JT, Eskandar EN, “Risk factors for hemorrhage during microelectrode-guided deep brain stimulation and the introduction of an improved microelectrode design.,” Neurosurgery, vol. 64, no. 4, pp. 753–754, Apr. 2009.

  88. MicroProbs. “LINEAR MICROELECTRODE ARRAY.” [Online]. Available: https://www.microprobes.com/products/multichannel-arrays/lma.

  89. Jun JJ, et al., “Fully integrated silicon probes for high-density recording of neural activity,” Nature, vol. 551, no. 7679, pp. 232–236, Nov. 2017.

  90. Rosa M, et al. Risk of Infection After Local Field Potential Recording from Externalized Deep Brain Stimulation Leads in Parkinson’s Disease. ” World Neurosurg. Jan. 2017;97:64–9. 

    Article  Google Scholar 

  91. Mayberg HS, et al., “Deep brain stimulation for treatment-resistant depression.,” Neuron, vol. 45, no. 5, pp. 651–660, Mar. 2005.

  92. Laxton AW, Lozano AM, “Deep brain stimulation for the treatment of Alzheimer disease and dementias.,” World Neurosurg., vol. 80, no. 3–4, p. S28.e1-8, 2013.

  93. Laxton AW, et al., “A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease.,” Ann. Neurol., vol. 68, no. 4, pp. 521–534, Oct. 2010.

  94. Porta M, et al., “Thalamic deep brain stimulation for treatment-refractory Tourette syndrome: two-year outcome.,” Neurology, vol. 73, no. 17, pp. 1375–1380, Oct. 2009.

  95. Bloch MH, Leckman JF, “Clinical course of Tourette syndrome,” J. Psychosom. Res., vol. 67, no. 6, pp. 497–501, Dec. 2009.

  96. Bittar RG, et al., “Deep brain stimulation for pain relief: a meta-analysis.,” J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas., vol. 12, no. 5, pp. 515–519, Jun. 2005.

  97. Sims-Williams H, et al., “Deep brain stimulation of the periaqueductal gray releases endogenous opioids in humans.,” Neuroimage, vol. 146, pp. 833–842, Feb. 2017.

  98. Vanhoecke J, Hariz M, “Deep brain stimulation for disorders of consciousness: Systematic review of cases and ethics.,” Brain Stimul., vol. 10, no. 6, pp. 1013–1023, Nov. 2017.

  99. Wan KR, Maszczyk T, See AAQ, Dauwels J, King NKK, “A review on microelectrode recording selection of features for machine learning in deep brain stimulation surgery for Parkinson’s disease.,” Clin. Neurophysiol., vol. 130, no. 1, pp. 145–154, Jan. 2019.

  100. Rajpurohit V, Danish SF, Hargreaves EL, Wong S. Optimizing computational feature sets for subthalamic nucleus localization in DBS surgery with feature selection. ” Clin Neurophysiol. May 2015;126(5):975–82. 

    Article  Google Scholar 

  101. Steigerwald F, Muller L, Johannes S, Matthies C, Volkmann J. Directional deep brain stimulation of the subthalamic nucleus: A pilot study using a novel neurostimulation device. ” Mov Disord. Aug. 2016;31(8):1240–3. 

    Article  Google Scholar 

  102. Contarino MF, et al., “Directional steering: A novel approach to deep brain stimulation.,” Neurology, vol. 83, no. 13, pp. 1163–1169, Sep. 2014.

  103. Morishita T, Inoue T. Need for multiple biomarkers to adjust parameters of closed-loop deep brain stimulation for Parkinson’s disease. Neural Regen Res. May 2017;12(5):747–8. 

    Article  Google Scholar 

  104. Feng X-J, Greenwald B, Rabitz H, Shea-Brown E, Kosut R, “Toward closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model.,” J. Neural Eng., vol. 4, no. 2, pp. L14-21, Jun. 2007.

  105. Rosin B, et al., “Closed-loop deep brain stimulation is superior in ameliorating parkinsonism.,” Neuron, vol. 72, no. 2, pp. 370–384, Oct. 2011.

  106. Parastarfeizabadi M, Kouzani AZ, “Advances in closed-loop deep brain stimulation devices,” J. Neuroeng. Rehabil., vol. 14, no. 1, p. 79, Aug. 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeongwon Park.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Human and animals rights

This article does contain studies with human participants performed by the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malvea, A., Babaei, F., Boulay, C. et al. Deep brain stimulation for Parkinson’s Disease: A Review and Future Outlook. Biomed. Eng. Lett. 12, 303–316 (2022). https://doi.org/10.1007/s13534-022-00226-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-022-00226-y

Index Terms

Navigation