Skip to main content
Log in

Quantitative determination of pesticides in human plasma using bio-SPME-LC–MS/MS: a robust tool to assess occupational exposure to pesticides

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Analysis of biofluids, such as plasma, can be used to investigate occupational pesticide exposure in the agricultural industry. Considering the chemical complexity and variability of plasma samples, any protocol for pesticide analysis should achieve efficient sample cleanup to minimize matrix effects and enhance method sensitivity through analyte pre-concentration. In this work, a high-throughput method was developed for analysis of 79 pesticides, commonly used in agricultural practices, in human plasma, using biocompatible solid-phase microextraction (SPME) coupled to liquid chromatography–tandem mass spectrometry. An SPME method was developed using a biocompatible hydrophilic–lipophilic balance/polyacrylonitrile (HLB/PAN) extraction phase and demonstrated negligible matrix effects. The performance of the developed SPME method was compared to a QuEChERS —Quick, Easy, Cheap, Effective, Rugged, and Safe— method, the most common sample preparation and cleanup approach for pesticide analysis in complex matrices. Comparable accuracy and precision were achieved for both methods, with accuracy values within 70–120% and relative standard deviation < 15%. Overall, the developed SPME and QuEChERS methods extracted 79 out of 82 monitored pesticides in human plasma. The SPME protocol demonstrated higher sensitivity than the QuEChERS method and a drastic reduction of matrix effects.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Damalas CA, Eleftherohorinos IG. Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health. 2011;8:1402–19. https://doi.org/10.3390/ijerph8051402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alavanja MCR. Pesticides use and exposure extensive worldwide. Rev Environ Health. 2009;24:303–9. https://doi.org/10.1515/REVEH.2009.24.4.303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Philippe V, Neveen A, Marwa A, Ahmad AYBasel. Occurrence of pesticide residues in fruits and vegetables for the Eastern Mediterranean Region and potential impact on public health. Food Control. 2021;119:107457. https://doi.org/10.1016/j.foodcont.2020.107457.

    Article  CAS  Google Scholar 

  4. Curl CL, Beresford SAA, Fenske RA, Fitzpatrick AL, Lu C, Nettleton JA, Kaufman JD. Estimating pesticide exposure from dietary intake and organic food choices: the multi-ethnic study of atherosclerosis (MESA). Environ Health Perspect. 2014;123:475–83. https://doi.org/10.1289/ehp.1408197.

    Article  Google Scholar 

  5. Damalas CA, Koutroubas SD. Farmers’ exposure to pesticides: toxicity types and ways of prevention. Toxics. 2016;4:1–10. https://doi.org/10.3390/toxics4010001.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dhananjayan V, Ravichandran B. Occupational health risk of farmers exposed to pesticides in agricultural activities. Curr Opin Environ Sci Heal. 2018;4:31–7. https://doi.org/10.1016/j.coesh.2018.07.005.

    Article  Google Scholar 

  7. Fishel FM (2015) A summary of revisions to the worker protection. Edis 1–5.

  8. Hornstein JS, Ellerhoff J (2018) Compliance with the worker protection standard. https://doi.org/10.31274/icm-180809-529.

  9. Corva D, Meisel JS (2021) The Routledge Handbook of Post-Prohibition Cannabis Research.

  10. Pinkhasova DV, Jameson LE, Conrow KD, Simeone MP, Davis AP, Wiegers TC, Mattingly CJ, Leung MCK. Regulatory status of pesticide residues in cannabis: implications to medical use in neurological diseases. Curr Res Toxicol. 2021;2:140–8. https://doi.org/10.1016/j.crtox.2021.02.007.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang J, Stewart R, Phillips M, Shi Q, Prince M. Pesticide exposure and suicidal ideation in rural communities in Zhejiang province, China. Bull World Health Organ. 2009;87:746–53. https://doi.org/10.2471/BLT.08.054122.

    Article  Google Scholar 

  12. Alves A, Kucharska A, Erratico C, Xu F, Den Hond E, Koppen G, Vanermen G, Covaci A, Voorspoels S. Human biomonitoring of emerging pollutants through non-invasive matrices: state of the art and future potential. Anal Bioanal Chem. 2014;406:4063–88. https://doi.org/10.1007/S00216-014-7748-1.

    Article  CAS  PubMed  Google Scholar 

  13. Panuwet P, Jr REH, Souza PED, Chen X, Radford A, Cohen JR, Marder ME, Kartavenka K, Barry P, Barr DB (2016) Biological matrix effects in quantitative tandem mass spectrometry-based analytical methods: advancing biomonitoring. 46:93–105. https://doi.org/10.1080/10408347.2014.980775.Biological.

  14. Godage NH, Gionfriddo E. Biocompatible SPME coupled to GC/MS for analysis of xenobiotics in blood plasma. J Chromatogr B Anal Technol Biomed Life Sci. 2022;1203:123308. https://doi.org/10.1016/j.jchromb.2022.123308.

    Article  CAS  Google Scholar 

  15. Lehmann E, Oltramare C, NfonDibié JJ, Konaté Y, d Alencastro LF. Assessment of human exposure to pesticides by hair analysis: the case of vegetable-producing areas in Burkina Faso. Environ Int. 2018;111:317–31. https://doi.org/10.1016/j.envint.2017.10.025.

    Article  CAS  PubMed  Google Scholar 

  16. Baynes RE, Riviere JE (2010) Absorption. Hayes’ Handb Pestic Toxicol 877–892. https://doi.org/10.1016/B978-0-12-374367-1.00037-9.

  17. Hernández F, Sancho JV, Pozo OJ. Critical review of the application of liquid chromatography/mass spectrometry to the determination of pesticide residues in biological samples. Anal Bioanal Chem. 2005;382:934–46. https://doi.org/10.1007/s00216-005-3185-5.

    Article  CAS  PubMed  Google Scholar 

  18. Jiang R, Xu J, Zhu F, Luan T, Zeng F, Shen Y, Ouyang G. Study of complex matrix effect on solid phase microextraction for biological sample analysis. J Chromatogr A. 2015;1411:34–40. https://doi.org/10.1016/j.chroma.2015.07.118.

    Article  CAS  PubMed  Google Scholar 

  19. Cichelli J, Doyle RM (2015) LC/MS/MS analysis of barbiturates in urine, oral fluid and blood. 5000.

  20. Campíns-Falcó P, Sevillano-Cabeza A, Herráez-Hernández R, Molins-Legua C, Moliner-Martínez Y, Verdú-Andrés J. Solid-phase extraction and clean-up procedures in pharmaceutical analysis. Encycl Anal Chem. 2012. https://doi.org/10.1002/9780470027318.a1920.pub2.

    Article  Google Scholar 

  21. Wilkowska A, Biziuk M. Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chem. 2011;125:803–12. https://doi.org/10.1016/j.foodchem.2010.09.094.

    Article  CAS  Google Scholar 

  22. Simpson H, Berthemy A, Buhrman D, Burton R, Newton J, Kealy M, Wells D, Wu D. High throughput liquid chromatography/mass spectrometry bioanalysis using 96-well disk solid phase extraction plate for the sample preparation. Rapid Commun Mass Spectrom. 1998;12:75–82. https://doi.org/10.1002/(SICI)1097-0231(19980131)12:2%3c75::AID-RCM112%3e3.0.CO;2-C.

  23. Godage NH, Gionfriddo E. A critical outlook on recent developments and applications of matrix compatible coatings for solid phase microextraction. TrAC - Trends Anal Chem. 2019;111:220–8. https://doi.org/10.1016/j.trac.2018.12.019.

    Article  CAS  Google Scholar 

  24. (2018) Food and Drug Administration, Bioanalytical Method validation guidance.

  25. Dutta S, Basu N, Mandal D. ESIPT in a binary mixture of non-polar and protic polar solvents : role of solvation dynamics. J Photochem Photobiol A Chem. 2022;435:114240. https://doi.org/10.1016/j.jphotochem.2022.114240.

    Article  CAS  Google Scholar 

  26. Darvishnejad F, Raoof JB, Ghani M. MIL-101 (Cr) @ graphene oxide-reinforced hollow fiber solid-phase microextraction coupled with high-performance liquid chromatography to determine diazinon and chlorpyrifos in tomato, cucumber and agricultural water. Anal Chim Acta. 2020;1140:99–110. https://doi.org/10.1016/j.aca.2020.10.015.

    Article  CAS  PubMed  Google Scholar 

  27. Morales EL, Sinuco LDC, Ahumada DA (2020) Stabilization strategies for unstable pesticides in calibration reference materials. 17th IMEKO TC 10 EUROLAB Virtual Conf “Global Trends Testing, Diagnostics Insp 2030” 129–134.

  28. Godage NH, Cudjoe E, Neupane R, Boddu SH, Bolla PK, Renukuntla J, Gionfriddo E (2020) Biocompatible SPME fibers for direct monitoring of nicotine and its metabolites at ultra trace concentration in rabbit plasma following the application of smoking cessation formulations. J Chromatogr A 1626:. https://doi.org/10.1016/j.chroma.2020.461333.

  29. Risticevic S, Lord H, Górecki T, Arthur CL, Pawliszyn J. Protocol for solid-phase microextraction method development. Nat Protoc. 2010;5:122–39. https://doi.org/10.1038/nprot.2009.179.

    Article  CAS  PubMed  Google Scholar 

  30. Brandt JM, Brière LK, Marr J, MacDonald SJ, Bourne RB, Medley JB. Biochemical comparisons of osteoarthritic human synovial fluid with calf sera used in knee simulator wear testing. J Biomed Mater Res - Part A. 2010;94:961–71. https://doi.org/10.1002/jbm.a.32728.

    Article  CAS  Google Scholar 

  31. Shiea J, Bhat SM, Su H, Kumar V, Lee CW, Wang CH (2020) Rapid quantification of acetaminophen in plasma using solid-phase microextraction coupled with thermal desorption electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 34: https://doi.org/10.1002/rcm.8564.

  32. Abdel-Rehim M, Bielenstein M, Arvidsson T (2000) Evaluation of solid-phase microextraction in combination with gas chromatography (SPME-GC) as a tool for quantitative bioanalysis. J Microcolumn Sep 12:308–315. https://doi.org/10.1002/(SICI)1520-667X(2000)12:5<308::AID-MCS5>3.0.CO;2-F.

  33. Prosen H, Zupančič-Kralj L. Solid-phase microextraction. TrAC - Trends Anal Chem. 1999;18:272–82. https://doi.org/10.1016/S0165-9936(98)00109-5.

    Article  CAS  Google Scholar 

  34. Matuszewski BK, Constanzer ML, Chavez-Eng CM. Matrix effect in quantitative LC/MS/MS analyses of biological fluids: a method for determination of finasteride in human plasma at picogram per milliliter concentrations. Anal Chem. 1998;70:882–9. https://doi.org/10.1021/ac971078+.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors thank the University of Toledo for funding and Supelco, MilliporeSigma, for providing the SPME devices tested in this work. T.C. acknowledges the Office of Undergraduate Research at the University of Toledo for providing funding to conduct this work through the Undergraduate Research Academic Year Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Gionfriddo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4987 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godage, N.H., Cudjoe, E., Chau, T. et al. Quantitative determination of pesticides in human plasma using bio-SPME-LC–MS/MS: a robust tool to assess occupational exposure to pesticides. Anal Bioanal Chem 415, 4423–4434 (2023). https://doi.org/10.1007/s00216-023-04589-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04589-8

Keywords

Navigation