Skip to main content
Log in

Al/Al2O3 metal matrix composites produced using magnetic field-assisted freeze-casting of porous ceramic structures

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Al/Al2O3 metal matrix composites (MMCs) were produced by metal infiltration of porous ceramic preforms. The porous ceramic preforms were fabricated using the magnetic field-assisted freeze-casting method, resulting in vertically aligned porous channels. Preforms were prepared by freezing an Al2O3/Fe3O4-containing slurry within an applied magnetic field. Vertical alignment of the channels was facilitated by the magnetic response of the Fe3O4 in the slurry during the freezing process. After freezing and sublimation, the ceramic preforms were sintered and then infiltrated with molten A356 Al-based alloy. The mechanical properties of the resulting Al2O3/A356 MMCs were compared to those of bulk Al2O3, bulk Al-based alloy (A356), and porous Al2O3 preforms using micro-indentation testing. The indentation hardness and elastic moduli values of Al2O3/A356 MMCs showed good agreement with the predicted theoretical calculations. This study provides a new approach for the design of MMCs with controlled composition and improved mechanical characteristics.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. S. Basavarajappa, G. Chandramohan, K. Rao, R. Radhakrishanan, and V. Krishnaraj, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 220, 1189 (2006).

  2. X.H. Qu, L. Zhang, M. Wu, S. Bin Ren, Review of metal matrix composites with high thermal conductivity for thermal management applications. Prog. Nat. Sci. Mater. Int. 21(3), 189 (2011)

    Article  Google Scholar 

  3. A.W. Urquhart, Novel reinforced ceramics and metals: a review of Lanxide’s composite technologies. Mater. Sci. Eng. A 144(1–2), 75 (1991)

    Article  Google Scholar 

  4. S. Suresh, A. Mortensen, and A. Needleman, Fundam. Met. Compos. 1 (2013).

  5. T.W. Clyne, P.J. Withers, An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, 1993).

    Book  Google Scholar 

  6. I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, Particulate reinforced metal matrix composites: a review. J. Mater. Sci. 26(5), 1137 (1991)

    Article  CAS  Google Scholar 

  7. S. Roy, B. Butz, A. Wanner, Damage evolution and domain-level anisotropy in metal/ceramic composites exhibiting lamellar microstructures. Acta Mater. 58(7), 2300 (2010)

    Article  CAS  Google Scholar 

  8. R. Piat, Y. Sinchuk, M. Vasoya, O. Sigmund, Minimal compliance design for metal-ceramic composites with lamellar microstructures. Acta Mater. 59(12), 4835 (2011)

    Article  CAS  Google Scholar 

  9. S. Deville, Freeze-casting of porous ceramics: a review of current achievements and issues. Adv. Eng. Mater. 10(3), 155 (2008)

    Article  CAS  Google Scholar 

  10. S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia, Freezing as a path to build complex composites. Science (80-.) 311(5760), 515 (2006)

    Article  CAS  Google Scholar 

  11. C. Ferraro, S. Meille, J. Réthoré, N. Ni, J. Chevalier, E. Saiz, Strong and tough metal/ceramic micro-laminates. Acta Mater. 144, 202 (2018)

    Article  CAS  Google Scholar 

  12. R.F. Guo, P. Shen, C. Sun, Y. Wang, A. Shaga, Q. Chuan Jiang, Processing and mechanical properties of lamellar-structured Al-7Si-5Cu/TiC composites. Mater. Des. 106, 446 (2016)

    Article  CAS  Google Scholar 

  13. A. Shaga, P. Shen, C. Sun, Q. Jiang, Lamellar-interpenetrated Al-Si-Mg/SiC composites fabricated by freeze casting and pressureless infiltration. Mater. Sci. Eng. A 630, 78 (2015)

    Article  CAS  Google Scholar 

  14. R.F. Guo, N. Guo, P. Shen, L.K. Yang, Q.C. Jiang, Effects of ceramic lamellae compactness and interfacial reaction on the mechanical properties of nacre-inspired Al/Al2O3–ZrO2 composites. Mater. Sci. Eng. A 718, 326 (2018)

    Article  CAS  Google Scholar 

  15. Y.L. Li, P. Shen, L.K. Yang, X. Sun, Q.C. Jiang, A novel approach to the fabrication of lamellar Al2O3/6061Al composites with high-volume fractions of hard phases. Mater. Sci. Eng. A 754, 75 (2019)

    Article  CAS  Google Scholar 

  16. P.F. Becher, Microstructural design of toughened ceramics. J. Am. Ceram. Soc. 74(10), 2720 (1991)

    Article  CAS  Google Scholar 

  17. Y. Birol, Semi-solid processing of the primary aluminium die casting alloy A365. J. Alloys Compd. 473(1–2), 133 (2009)

    Article  CAS  Google Scholar 

  18. S. Bakkar, J. Lee, N. Ku, D. Berman, S.M. Aouadi, R.E. Brennan, M.L. Young, Design of porous aluminum oxide ceramics using magnetic field-assisted freeze-casting. J. Mater. Res. 35(21), 1 (2020)

    Article  CAS  Google Scholar 

  19. I. Nelson, S.E. Naleway, Intrinsic and extrinsic control of freeze casting. J. Mater. Res. Technol. 8(2), 2372 (2019)

    Article  Google Scholar 

  20. M.M. Porter, M. Yeh, J. Strawson, T. Goehring, S. Lujan, P. Siripasopsotorn, M.A. Meyers, J. McKittrick, Magnetic freeze casting inspired by nature. Mater. Sci. Eng. A 556, 741 (2012)

    Article  CAS  Google Scholar 

  21. M.B. Frank, S.E. Naleway, T. Haroush, C.H. Liu, S.H. Siu, J. Ng, I. Torres, A. Ismail, K. Karandikar, M.M. Porter, O.A. Graeve, J. McKittrick, Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting. Mater. Sci. Eng. C 77, 484 (2017)

    Article  CAS  Google Scholar 

  22. T.E. Wilkes, M.L. Young, R.E. Sepulveda, D.C. Dunand, K.T. Faber, Composites by aluminum infiltration of porous silicon carbide derived from wood precursors. Scr. Mater. 55(12), 1083 (2006)

    Article  CAS  Google Scholar 

  23. S. Roy, A. Wanner, Metal/ceramic composites from freeze-cast ceramic preforms: domain structure and elastic properties. Compos. Sci. Technol. 68(5), 1136 (2008)

    Article  CAS  Google Scholar 

  24. S.M. Miller, X. Xiao, K.T. Faber, Freeze-cast alumina pore networks: effects of freezing conditions and dispersion medium. J. Eur. Ceram. Soc. 35(13), 3595 (2015)

    Article  CAS  Google Scholar 

  25. S.M. Miller, X. Xiao, J.A. Setlock, K.T. Faber, Freeze-cast alumina pore networks: effects of processing parameters in steady-state solidification regimes of aqueous slurries. J. Eur. Ceram. Soc. 38(15), 5134 (2018)

    Article  CAS  Google Scholar 

  26. M. Naviroj, P.W. Voorhees, K.T. Faber, Suspension- and solution-based freeze casting for porous ceramics. J. Mater. Res. 32(17), 3372 (2017)

    Article  CAS  Google Scholar 

  27. U. G. K. Wegst, M. Schecter, A. E. Donius, and P. M. Hunger, Biomaterials by freeze casting. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368(1917), 2099 (2010).

  28. K.L. Scotti, D.C. Dunand, Freeze casting: a review of processing, microstructure and properties via the open data repository FreezeCasting.net. Prog. Mater. Sci. 94, 243 (2018)

    Article  CAS  Google Scholar 

  29. Y. Tang, S. Qiu, C. Wu, Q. Miao, K. Zhao, Freeze cast fabrication of porous ceramics using tert-butyl alcohol-water crystals as template. J. Eur. Ceram. Soc. 36(6), 1513 (2016)

    Article  CAS  Google Scholar 

  30. S. Bakkar, M. V. Pantawane, J. J. Gu, A. Ghoshal, M. Walock, M. Murugan, M. L. Young, N. Dahotre, D. Berman, and S. M. Aouadi, Laser surface modification of porous yttria stabilized zirconia against CMAS degradation. Ceram. Int. No. November (2019).

  31. Z. Wang, P. Feng, X. Wang, P. Geng, F. Akhtar, H. Zhang, Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin. Ceram. Int. 42(10), 12414 (2016)

    Article  CAS  Google Scholar 

  32. H.J. Choi, T.Y. Yang, S.Y. Yoon, B.K. Kim, H.C. Park, Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Mater. Chem. Phys. 133(1), 16 (2012)

    Article  CAS  Google Scholar 

  33. M.L. Young, R. Rao, J.D. Almer, D.R. Haeffner, J.A. Lewis, D.C. Dunand, Load partitioning in Al2O3-Al composites with three-dimensional periodic architecture. Acta Mater. 57(8), 2362 (2009)

    Article  CAS  Google Scholar 

  34. M.L. Young, R. Rao, J.D. Almer, D.R. Haeffner, J.A. Lewis, D.C. Dunand, Effect of ceramic preform geometry on load partitioning in Al2O3-Al composites with three-dimensional periodic architecture. Mater. Sci. Eng. A 526(1–2), 190 (2009)

    Article  CAS  Google Scholar 

  35. A. Pramanik, L.C. Zhang, J.A. Arsecularatne, Micro-indentation of metal matrix composite: an FEM investigation. Key Eng. Mater. 340–341, 563 (2007)

    Article  Google Scholar 

  36. A. Pramanik, L.C.C. Zhang, J.A.A. Arsecularatne, Micro-indentation of metal matrix composites: a 3D finite element analysis 1 introduction 2 modelling 3 results and discussions. Int. J. Mach. Tools Manuf. 47, 1497 (2007)

    Article  Google Scholar 

  37. Z. Yuan, F. Li, P. Zhang, B. Chen, F. Xue, Mechanical properties study of particles reinforced aluminum matrix composites by micro-indentation experiments. Chin. J. Aeronaut. 27(2), 397 (2014)

    Article  Google Scholar 

  38. X.H.M. Hartmann, P. Van Der Linde, E.F.G.A. Homburg, L.C.A. Van Breemen, A.M. De Jong, R. Luttge, Insertion process of ceramic nanoporous microneedles by means of a novel mechanical applicator design. Pharmaceutics 7(4), 503 (2015)

    Article  CAS  Google Scholar 

  39. W.D. Callister, D.G. Rethwisch, Fundamentals of Materials Science and Engineering an Integrated Approach, 3rd edn. (Wiley, Hoboken, NJ, 2008).

    Google Scholar 

  40. S.E. Naleway, C.F. Yu, R.L. Hsiong, A. Sengupta, P.M. Iovine, J.A. Hildebrand, M.A. Meyers, J. McKittrick, Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Mater. 114, 67 (2016)

    Article  CAS  Google Scholar 

  41. M.M. Porter, R. Imperio, M. Wen, M.A. Meyers, J. McKittrick, Bioinspired scaffolds with varying pore architectures and mechanical properties. Adv. Funct. Mater. 24(14), 1978 (2014)

    Article  CAS  Google Scholar 

  42. L. Wang, C. Ortiz, M.C. Boyce, Mechanics of indentation into micro- and nanoscale forests of tubes, rods, or pillars. J. Eng. Mater. Technol. Trans. ASME 133(1), 1 (2011)

    Article  Google Scholar 

  43. A. Shirani, T. Joy, A. Rogov, M. Lin, A. Yerokhin, J. E. Mogonye, A. Korenyi-Both, S. M. Aouadi, A. A. Voevodin, and D. Berman, Surf. Coatings Technol. 397, (2020).

  44. M. A. Carl, Alloy development and high-energy X-ray diffraction studies of NiTiZr and NiTiHf high temperature shape memory alloys, dissertation prepared for the degree of doctor of philosophy, University of North Texas. 157 (2018).

  45. N.A. Ley, J. Smith, R.W. Wheeler, M.L. Young, Effects of thermo-mechanical processing on precipitate evolution in Ni-rich high temperature shape memory alloys. Materialia 8(April), 100496 (2019)

    Article  CAS  Google Scholar 

  46. M.L. Young, J.D. Almer, M.R. Daymond, D.R. Haeffner, D.C. Dunand, Load partitioning between ferrite and cementite during elasto-plastic deformation of an ultrahigh-carbon steel. Acta Mater. 55(6), 1999 (2007)

    Article  CAS  Google Scholar 

  47. R.W. Wheeler, O. Benafan, F.T. Calkins, X. Gao, Z. Ghanbari, G. Hommer, D. Lagoudas, D. Martin, D.E. Nicholson, A. Petersen, F.R. Phillips, A.P. Stebner, T.L. Turner, Engineering design tools for shape memory alloy actuators: CASMART collaborative best practices and case studies. J. Intell. Mater. Syst. Struct. 30(18–19), 2808 (2019)

    Article  Google Scholar 

  48. A. P. Hammersley: Eur. Synchrotron Radiat. Facil. Intern. Rep. ESRF97HA02T 68, 58 (1997).

  49. F. Živić, M. Babić, G. Favaro, M. Caunii, N. Grujović, S. Mitrović, Microindentation of polymethyl methacrylate (PMMA) based bone cement. Tribol. Ind. 33(4), 146 (2011)

    Google Scholar 

  50. A. Chorfa, M. Hamidouche, M.A. Madjoubi, F. Petit, Mechanical behaviour of glass during cyclic instrumented indentation. Mater. Sci. Pol. 28(1), 255 (2010)

    CAS  Google Scholar 

  51. X. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48(1), 11 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Army Research Laboratory (Award No. W911NF-19-2-0011). This work was performed in part at the University of North Texas’s Materials Research Facility. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors would like to acknowledge Dr. Chris Benmore, the beamline scientist, for help with the setting up and controlling the SR-XRD experiments at sector 6-ID-D, as well as Dr. Robert Wheeler and Faith Gantz for data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus L. Young.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakkar, S., Wall, M., Ku, N. et al. Al/Al2O3 metal matrix composites produced using magnetic field-assisted freeze-casting of porous ceramic structures. Journal of Materials Research 36, 2094–2106 (2021). https://doi.org/10.1557/s43578-021-00159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00159-9

Keywords

Navigation