Skip to main content
Log in

A comparative study of calcium–magnesium–aluminum–silicon oxide mitigation in selected self-healing thermal barrier coating ceramics

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mitigation of CMAS (calcium–magnesium–aluminum–silicon oxide) infiltration is a major requirement for the stability of thermal barrier coatings. In this study, yttria-stabilized zirconia (YSZ)–Al2O3–SiC, YSZ–Al2O3–Ta2O5, and YSZ–Al2O3–Nb2O5 self-healing composites produced by uniaxially pressing powders were investigated as an alternative to YSZ. CMAS infiltration in these materials was tested at 1250 °C for 10 h. Comparing the depth of CMAS infiltration using scanning electron microscope (SEM) in tandem with electron-dispersive X-ray spectroscopy (EDS), all self-healing materials were found to perform better than the reference materials. While standard YSZ shows massive CMAS infiltration, SEM micrographs and EDS maps revealed a 33-fold improvement in CMAS resistance for the YSZ–Al2O3–Nb2O5 system, which exhibited the best performance among the selected self-repairing materials. X-ray diffraction and high-resolution SEM micrographs taken 10 μm below the surface revealed that CMAS only infiltrated pores in the topmost region of the samples. Both YSZ–Al2O3–Ta2O5 and YSZ–Al2O3–Nb2O5 systems showed no signs of chemical reaction with CMAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1:
Figure 2:
Figure 3:
Table 1
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Similar content being viewed by others

References

  1. S. Dhomme and A.M. Mahalle: Thermal barrier coating materials for SI engine. J. Mater. Res. Technol. 8, 1532–1537 (2019).

    Article  Google Scholar 

  2. B. Liu, Y. Liu, C. Zhu, H. Xiang, H. Chen, Y. Gao, and Y. Zhou: Advances on strategies for searching for next generation thermal barrier coating materials. J. Mater. Res. Technol. 8, 833–851 (2019).

    CAS  Google Scholar 

  3. D.R. Clarke and S.R. Phillpot: Thermal barrier coating materials. Mater. Today 8, 22–29 (2005).

    Article  CAS  Google Scholar 

  4. V. Kumar and B. Kandasubramanian: Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications. Particuology 27, 1–28 (2016).

    Article  CAS  Google Scholar 

  5. L. Hu, C.-A. Wang, Y. Huang, C. Sun, S. Lu, and Z. Hu: Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectionally aligned channels using different freezing temperatures. J. Eur. Cerm. Soc. 30, 3389–3396 (2010).

    Article  CAS  Google Scholar 

  6. S.W. Myoung, S.S. Lee, H.S. Kim, M.S. Kim, Y.G. Jung, and S.I. Jung: Effect of post heat treatment on thermal durability of thermal barrier coatings in thermal fatigue tests. Surf. Coat. Technol. 215, 46–51 (2013).

    Article  CAS  Google Scholar 

  7. C. Zhao, M. Zhao, M. Shahid, M. Wang, and W. Pan: Restrained TGO growth in YSZ/NiCrAlY thermal barrier coatings by modified laser remelting. Surf. Coat. Technol. 309, 1119–1125 (2017).

    Article  CAS  Google Scholar 

  8. M. Craig, N.L. Ndamka, R.G. Wellman, and J.R. Nicholls: CMAS degradation of EB-PVD TBCs: The effect of basicity. Surf. Coat. Technol. 270, 145–153 (2015).

    Article  CAS  Google Scholar 

  9. K.M. Grant, S. Krämer, J.P.A. Löfvander, and C.G. Levi. CMAS degradation of environmental barrier coatings. Surf. Coat. Technol. 202, 653–657 (2007).

    Article  CAS  Google Scholar 

  10. S. Krämer, J. Yang, C.G. Levi, and C.A. Johnson. Thermomechnical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits. J. Am. Ceram. Soc. 89, 3167–3175 (2006).

    Article  Google Scholar 

  11. A. Nieto, M. Walock, A. Ghoshal, D. Zhu, W. Gamble, B. Barnett, M. Murugan, M. Pepi, C. Rowe, and R. Pegg: Layered, composite, and doped thermal barrier coatings exposed to sand laden flows within a gas turbine engine: Microstructural evolution, mechanical properties, and CMAS deposition. Surf. Coat. Technol. 349, 1107–1116 (2018).

    Article  CAS  Google Scholar 

  12. A.K. Rai, R.S. Bhattacharya, D.E. Wolfe, and T.J. Eden: CMAS-resistant thermal barrier coatings. Int. J. Appl. Ceram. Technol. 7, 662–674 (2010).

    Article  CAS  Google Scholar 

  13. Y.X. Kang, Y. Bai, G.Q. Du, F.L. Yu, C.G. Bao, Y.T. Wang, and F. Ding: High temperature wettability between CMAS and YSZ coating with tailored surface microstructures. Mater. Lett. 229, 40–43 (2018).

    Article  CAS  Google Scholar 

  14. S. Bakkar, M.V. Pantawane, J.J. Gu, A. Ghoshal, M. Walock, M. Murugan, M.L. Young, N. Dahotre, D. Berman, and S.M. Aouadi: Laser surface modification of porous yttria stabilized zirconia against CMAS degradation. Ceram. Int. 46, 6038–6045 (2020).

    Article  CAS  Google Scholar 

  15. J.M. Drexler, A.D. Gledhill, K. Shinoda, A.I. Vasiliev, K.M. Reddy, S. Sampath, and N.P. Padture: Jet engine coatings for resisting volcanic ash damage. Adv. Mater. 23, 2419–2424 (2011).

    Article  CAS  Google Scholar 

  16. R. Narapaju, R.P. Pubbysetty, P. Mechnich, and U. Schulz: EB-PVD alumina (Al2O3) as a top coat on 7YSZ TBCs against CMAS/VA infiltration: Deposition and reaction mechanisms. J. Eur. Ceram. Soc. 38, 3333–3346 (2018).

    Article  Google Scholar 

  17. T. Ouyang, S. Xiong, Y. Zhang, D. Liu, X. Fang, Y. Wang, S. Feng, T. Zhou, and J. Suo: Cyclic oxidation behavior of SiC-containing self-healing TBC systems fabricated by APS. J. Alloys Compd. 691, 811–821 (2017).

    Article  CAS  Google Scholar 

  18. J.J. Gu, S.S. Joshi, Y.-S. Ho, B.W. Wei, T.Y. Huang, J. Lee, D. Berman, N.B. Dahotre, and S.M. Aouadi: Oxidation-induced healing in laser-processed thermal barrier coatings. Thin Solid Films 688, 137481 (2019).

    Article  CAS  Google Scholar 

  19. A.M. Hassan, M. Awaad, F. Bondioli, and S.M. Naga: Densification behavior and mechanical properties of niobium-oxide-doped alumina ceramics. J. Ceram. Sci. Technol. 5, 51–56 (2014).

    Google Scholar 

  20. T. Ouyang, J. Wu, M. Yasir, T. Zhou, X. Fang, Y. Wang, D. Liu, and J. Suo: Effect of TiC self-healing coatings on the cyclic oxidation resistance and lifetime of thermal barrier coatings. J. Alloys Compd. 656, 992–1003 (2016).

    Article  CAS  Google Scholar 

  21. V.L. Wiesner and N.P. Bansal: Mechanical and thermal properties of calcium-magnesium aluminosilicate (CMAS) glass. J. Eur. Ceram. Soc. 35, 2907–2914 (2015).

    Article  CAS  Google Scholar 

  22. R. Naraparaju, U. Schulz, P. Mechnich, P. Döbber, and F. Seidel: Degradation study of 7 wt.% yttria stabilised zirconia (7YSZ) thermal barrier coatings on aero-engine combustion chamber parts due to infiltration by different CaO–MgO–Al2O3–SiO2 variants. Surf. Coat. Technol. 260, 73–81 (2014).

    Article  CAS  Google Scholar 

  23. S.M. Aouadi, J. Gu, and D. Berman. Self-healing ceramic coatings that operate in extreme environments: a review. J. Vac. Sci. Technol. A. 38, 050802 (2020).

    Article  CAS  Google Scholar 

  24. G. Pujol, F. Ansart, J.-P. Bonino, A. Malié, and S. Hamadi: Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications. Surf. Coat. Technol. 237, 71–78 (2013).

    Article  CAS  Google Scholar 

  25. E.N. Isuprova, N.A. Godina, and E.K. Keler: Phase diagram for ceramists. Izu. Akad. Nauk SSSR Neorg. Mater. 6, 1465–1469 (1970).

    Google Scholar 

  26. L. Guo, M. Li, C. Yang, C. Zhang, L. Xu, F. Ye, C. Dan, and V. Ji: Calcium-magnesium-alumina-silicate (CMAS) resistance property of BaLn2Ti3O10 (Ln = La, Nd) for thermal barrier coating applications. Ceram. Int. 43, 10521–10527 (2017).

    Article  CAS  Google Scholar 

  27. B. Zhang, W. Song, L. Wei, Y. Xiu, H. Xu, D.B. Dingwell, and H. Guo: Novel thermal barrier coatings repel and resist molten silicate deposits. Scr. Mater. 163, 71–76 (2019).

    Article  CAS  Google Scholar 

  28. D.E. Mack, R. Laquai, B. Müller, O. Helle, D. Sebold, R. Vaßen, and G. Bruno: Evolution of porosity, crack density, and CMAS penetration in thermal barrier coatings subjected to burner rig. J. Am. Ceram. Soc. 102, 6163–6175 (2019).

    Article  CAS  Google Scholar 

  29. L. Chen, M. Hu, and J. Feng: Mechanical properties, thermal expansion performance and intrinsic lattice thermal conductivity of AlMO4 (M = Ta, Nb) ceramics for high-temperature applications. Ceram. Int. 45, 6616–6623 (2019).

    Article  CAS  Google Scholar 

  30. T. Osada, K. Kamoda, M. Mitome, T. Hara, T. Abel, Y. Tamagawa, W. Nakao, and T. Ohmura: A novel design approach for self-crack-healing structural ceramics with 3D networks of healing activator. Sci. Rep. 7, 17853 (2017).

    Article  Google Scholar 

  31. A. Shirani, J. Gu, B. Wei, J. Lee, S.M. Aouadi, and D. Berman: Tribologically enhanced self-healing of niobium oxide surfaces. Surf. Coat. Technol. 364, 273–278 (2019).

    Article  CAS  Google Scholar 

  32. J.J. Gu, D. Steiner, J.E. Mogonye, and S.M. Aouadi: Precipitation-induced healing of Nb2O5. J. Eur. Ceram. Soc. 13, 4141–4146 (2017).

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge partial funding from the Army Research Laboratory. This work was performed, in part, at the University of North Texas's Materials Research Facility: A shared research facility for multi-dimensional fabrication and characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir M. Aouadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Wei, B., Berendt, A.F. et al. A comparative study of calcium–magnesium–aluminum–silicon oxide mitigation in selected self-healing thermal barrier coating ceramics. Journal of Materials Research 35, 2311–2320 (2020). https://doi.org/10.1557/jmr.2020.220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.220

Keywords

Navigation