Skip to main content
Log in

Design of porous aluminum oxide ceramics using magnetic field-assisted freeze-casting

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Table 1

References

  1. E.C. Hammel, O.L.R. Ighodaro, and O.I. Okoli: Processing and properties of advanced porous ceramics: An application based review. Ceram. Int. 40, 15351 (2014).

    Article  CAS  Google Scholar 

  2. D. Li and M. Li: Porous Y2SiO5 ceramic with low thermal conductivity. J. Mater. Sci. Technol. 28, 799 (2012).

    Article  CAS  Google Scholar 

  3. M.D. Sobsey, C.E. Stauber, L.M. Casanova, J.M. Brown, and M.A. Elliott: Response to comment on “Point of use household drinking water filtration: A practical, effective solution for providing sustained access to safe drinking water in the developing world.” Environ. Sci. Technol. 43, 970 (2009).

    Article  CAS  Google Scholar 

  4. S. Sundaram, P. Colombo, and Y. Katoh: Selected emerging opportunities for ceramics in energy, environment, and transportation. Int. J. Appl. Ceram. Technol. 10, 731 (2013).

    Article  CAS  Google Scholar 

  5. M. Zhou, D. Shu, K. Li, W.Y. Zhang, H.J. Ni, B.D. Sun, and J. Wang: Deep filtration of molten aluminum using ceramic foam filters and ceramic particles with active coatings. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 34A, 1183 (2003).

    Article  CAS  Google Scholar 

  6. R. Moene, M. Makkee, and J. Moulijn: High surface area silicon carbide as catalyst support characterization and stability. Appl. Catal. A Gen. 167, 321 (1998).

    Article  CAS  Google Scholar 

  7. C. Gaudillere, J. Garcia-Fayos, M. Balaguer, and J.M. Serra: Enhanced oxygen separation through robust freeze-cast bilayered dual-phase membranes. ChemSusChem 7, 2554 (2014).

    Article  CAS  Google Scholar 

  8. L.J. Gibson and G. Editor: Cellular Solids. No. April 2003, 270 (2018)

    Google Scholar 

  9. S. Deville: Freeze-casting of porous biomaterials: Structure, properties and opportunities. Materials 3, 1913 (2010).

    Article  CAS  Google Scholar 

  10. S. Deville, E. Saiz, and A.P. Tomsia: Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 27, 5480 (2006).

    Article  CAS  Google Scholar 

  11. N. Soltani, R. Martínez-Bautista, A. Bahrami, L. Huerta Arcos, M. Cassir, and J. Chávez Carvayar: Fabrication of aligned porous LaNi0.6Fe0.4O3 perovskite by water based freeze casting. Chem. Phys. Lett. 700, 138 (2018).

    Article  CAS  Google Scholar 

  12. A. Bahrami, U. Simon, N. Soltani, S. Zavareh, J. Schmidt, M.I. Pech-Canul, and A. Gurlo: Eco-fabrication of hierarchical porous silica monoliths by ice-templating of rice husk ash. Green Chem. 19, 188 (2017).

    Article  CAS  Google Scholar 

  13. A. Herzog, R. Klingner, U. Vogt, and T. Graule: Wood-derived porous SiC ceramics by sol infiltration and carbothermal reduction. J. Am. Ceram. Soc. 87, 784 (2004).

    Article  CAS  Google Scholar 

  14. A. Saboori, M. Rabiee, F. Moztarzadeh, M. Sheikhi, M. Tahriri, and M. Karimi: Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater. Sci. Eng. C 29, 335 (2009).

    Article  CAS  Google Scholar 

  15. A.R. Studart, U.T. Gonzenbach, E. Tervoort, and L.J. Gauckler: Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 89, 1771 (2006).

    Article  CAS  Google Scholar 

  16. K.L. Scotti and D.C. Dunand: Freeze casting—A review of processing, microstructure and properties via the open data repository, FreezeCasting.net. Prog. Mater. Sci. 94, 243 (2018).

    Article  CAS  Google Scholar 

  17. K. Araki and J.W. Halloran: Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique. J. Am. Ceram. Soc. 88, 1108 (2005).

    Article  CAS  Google Scholar 

  18. C. Stolze, T. Janoschka, U.S. Schubert, F.A. Müller, and S. Flauder: Directional solidification with constant ice front velocity in the ice-templating process. Adv. Eng. Mater. 18, 111 (2016).

    Article  CAS  Google Scholar 

  19. N. Arai and K.T. Faber: Hierarchical porous ceramics via two-stage freeze casting of preceramic polymers. Scr. Mater. 162, 72 (2019).

    Article  CAS  Google Scholar 

  20. C.D. Christiansen, K.K. Nielsen, and R. Bjørk: Novel freeze-casting device with high precision thermoelectric temperature control for dynamic freezing conditions. Rev. Sci. Instrum. 91, 033904 (2020).

    Article  CAS  Google Scholar 

  21. S. Deville, E. Saiz, and A.P. Tomsia: Ice-templated porous alumina structures. Acta Mater. 55, 1965 (2007).

    Article  CAS  Google Scholar 

  22. W.L. Li, K. Lu, and J.Y. Walz: Freeze casting of porous materials: Review of critical factors in microstructure evolution. Int. Mater. Rev. 57, 37 (2012).

    Article  CAS  Google Scholar 

  23. I. Nelson and S.E. Naleway: Intrinsic and extrinsic control of freeze casting. J. Mater. Res. Technol. 8, 2372 (2019).

    Article  Google Scholar 

  24. S. Deville, E. Saiz, R.K. Nalla, and A.P. Tomsia: Freezing as a path to build complex composites. Science 311, 515 (2006).

    Article  CAS  Google Scholar 

  25. S. Deville, E. Maire, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, and C. Guizard: In situ X-ray radiography and tomography observations of the solidification of aqueous alumina particle suspensions—Part I: Initial instants. J. Am. Ceram. Soc. 92, 2489 (2009).

    Article  CAS  Google Scholar 

  26. T. Fukasawa, Z.Y. Deng, M. Ando, T. Ohji, and Y. Goto: Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. J. Mater. Sci. 36, 2523 (2001).

    Article  CAS  Google Scholar 

  27. P. Niksiar, F. Su, M. Frank, T. Ogden, S. Naleway, M. Meyers, J. McKittrick, and M. Porter: External field assisted freeze casting. Ceramics 2, 208 (2019).

    Article  Google Scholar 

  28. M.M. Porter, P. Niksiar, and J. McKittrick: Microstructural control of colloidal-based ceramics by directional solidification under weak magnetic fields. J. Am. Ceram. Soc. 99, 1917 (2016).

    Article  CAS  Google Scholar 

  29. M.M. Porter, M. Yeh, J. Strawson, T. Goehring, S. Lujan, P. Siripasopsotorn, M.A. Meyers, and J. McKittrick: Magnetic freeze casting inspired by nature. Mater. Sci. Eng. A 556, 741 (2012).

    Article  CAS  Google Scholar 

  30. M.B. Frank, S.E. Naleway, T. Haroush, C.H. Liu, S.H. Siu, J. Ng, I. Torres, A. Ismail, K. Karandikar, M.M. Porter, O.A. Graeve, and J. McKittrick: Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting. Mater. Sci. Eng. C 77, 484 (2017).

    Article  CAS  Google Scholar 

  31. I. Nelson, T.A. Ogden, S. Al Khateeb, J. Graser, T.D. Sparks, J.J. Abbott, and S.E. Naleway: Freeze-casting of surface-magnetized iron(II,III) oxide particles in a uniform static magnetic field generated by a Helmholtz coil. Adv. Eng. Mater. 21, 1 (2019).

    Article  Google Scholar 

  32. Y. Tang, S. Qiu, Q. Miao, and C. Wu: Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields. J. Eur. Ceram. Soc. 36, 1233 (2016).

    Article  CAS  Google Scholar 

  33. K.H. Zuo, Y.P. Zeng, and D. Jiang: Properties of microstructure-controllable porous yttria-stabilized ziroconia ceramics fabricated by freeze casting. Int. J. Appl. Ceram. Technol. 5, 198 (2008).

    Article  CAS  Google Scholar 

  34. C. Peko, B. Groth, and I. Nettleship: The effect of polyvinyl alcohol on the microstructure and permeability of freeze-cast alumina. J. Am. Ceram. Soc. 93, 115 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Army Research Laboratory (Award No. W911NF-19-2-0011). This work was performed in part at the University of North Texas’s Materials Research Facility: A shared research facility for multi-dimensional fabrication and characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raymond E. Brennan or Marcus L. Young.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakkar, S., Lee, J., Ku, N. et al. Design of porous aluminum oxide ceramics using magnetic field-assisted freeze-casting. Journal of Materials Research 35, 2859–2869 (2020). https://doi.org/10.1557/jmr.2020.197

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.197

Navigation