Skip to main content
Log in

Observation of room-temperature superparamagnetic behavior of Fe5Si3 nanocrystals synthesized via 50 keV Fe ion implantation in silicon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanocrystalline Fe5Si3 structures embedded within the top 50 nm of Si substrate have been synthesized via low-energy (50 keV) Fe ion implantation and subsequent thermal annealing in vacuum at 500 °C for 1 h. Prior to the ion irradiation, the distribution of the implanted ions and sputtering of the implanted and target atoms were modeled using both static and dynamic ion solid interaction simulation codes in order to determine the desired ion implantation experimental parameters. The simulation showed that for a 50 keV Fe ion beam, the concentration of the Fe reaches a saturation value of 48% at a fluence ~ 2 × 1017 ions/cm2, while distributed within the top 60 nm from the surface of the Si substrate. Depth profile utilizing X-ray photoelectron spectroscopy spectra along with Ar-ion etching shows the presence of Fe ions buried under the surface of Si. X-ray diffraction pattern confirms the presence of crystalline Fe5Si3 in Si. In the vibrating sample magnetometer analysis, the synthesized Fe5Si3 nanocrystal structures show superparamagnetic behavior with very low magnetization at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Fang, L. Wu, Handbook of Innovative Nanomaterials: From Synthesis to Application, 1st edn. ((Jenny Stanford Publishing, CRC Press Taylor & Francis Group, Boca Raton, 2012)

    Book  Google Scholar 

  2. H. Watanabe, H. Yamamoto, K. Ito, Neutron diffraction study of the intermetallic compound FeSi. J. Phys. Soc. Jpn. 18, 995–999 (1963). https://doi.org/10.1143/JPSJ.18.995

    Article  ADS  Google Scholar 

  3. A.R. Weill, Structure of the Eta phase of the iron-silicon system. Nature 152, 413 (1943). https://doi.org/10.1038/152413a0

    Article  ADS  Google Scholar 

  4. Y. Chen, J. Qian, Y. Cao, H. Yang, X. Ai, Green synthesis and stable Li-storage performance of FeSi2/Si@C nanocomposite for lithium-ion batteries. ACS Appl. Mater. Interfaces 4, 3753–3758 (2012). https://doi.org/10.1021/am300952b

    Article  Google Scholar 

  5. D. Leong, M. Harry, K.J. Reeson, K.P. Homewood, A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm. Nature 387, 686 (1997)

    Article  ADS  Google Scholar 

  6. K. Takakura, H. Ohyama, K. Takarabe, T. Suemasu, F. Hasegawa, Hole mobility of p-type β-FeSi2 thin films grown from Si∕Fe multilayers. J. Appl. Phys. 97, 093716 (2005). https://doi.org/10.1063/1.1891279

    Article  ADS  Google Scholar 

  7. M. Miu, I. Kleps, T. Ignat, M. Simion, A. Bragaru, Study of nanocomposite iron/porous silicon material. J. Alloys Compd. 496, 265–268 (2010). https://doi.org/10.1016/j.jallcom.2010.01.058

    Article  Google Scholar 

  8. W.A. Jensen, N. Liu, E. Rosker, B.F. Donovan, B. Foley, P.E. Hopkins, J.A. Floro, Eutectoid transformations in Fe–Si alloys for thermoelectric applications. J. Alloys Compd. 721, 705–711 (2017). https://doi.org/10.1016/j.jallcom.2017.06.023

    Article  Google Scholar 

  9. X. Dai, L. Zhang, J. Li, Z. Wang, H. Li, Electronic transport properties of heterojunction devices constructed by single-wall Fe2Si and carbon nanotubes. J. Mater. Chem. C 6, 5794–5802 (2018). https://doi.org/10.1039/C8TC01708E

    Article  Google Scholar 

  10. Y. Sun, Z. Zhuo, X. Wu, J. Yang, Room-temperature ferromagnetism in two-dimensional Fe2Si nanosheet with enhanced spin-polarization ratio. Nano Lett. 17, 2771–2777 (2017). https://doi.org/10.1021/acs.nanolett.6b04884

    Article  ADS  Google Scholar 

  11. R. Nakane, M. Tanaka, S. Sugahara, Preparation and characterization of ferromagnetic DO3-phase Fe3Si thin films on silicon-on-insulator substrates for Si-based spin-electronic device applications. Appl. Phys. Lett. 89, 192503 (2006). https://doi.org/10.1063/1.2378487

    Article  ADS  Google Scholar 

  12. A.V. Alekseev, G.G. Gumarov, D.A. Konovalov, VYu. Petukhov, V.I. Nuzhdin, Uniaxial magnetic anisotropy of iron-silicide thin films ion synthesized in an external magnetic field. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 8, 1124–1127 (2014). https://doi.org/10.1134/S1027451014050036

    Article  Google Scholar 

  13. N. Balakirev, V. Zhikharev, G. Gumarov, The formation of magnetic silicide Fe3Si clusters during ion implantation. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 61–64 (2014). https://doi.org/10.1016/j.nimb.2013.09.032

    Article  ADS  Google Scholar 

  14. L. Wang, Q. Qi, H. Wu, H. Zhang, J. Yin, Y. Yang, J. Huang, X. Yang, X. Liu, Z. Huang, Stress distribution around Fe5Si3 and its effect on interface status and mechanical properties of Si3N4 ceramics. J. Am. Ceram. Soc. 101, 856–864 (2018). https://doi.org/10.1111/jace.15240

    Article  Google Scholar 

  15. S.A. Lyashchenko, Z.I. Popov, S.N. Varnakov, E.A. Popov, M.S. Molokeev, I.A. Yakovlev, A.A. Kuzubov, S.G. Ovchinnikov, T.S. Shamirzaev, A.V. Latyshev, A.A. Saranin, Analysis of optical and magnetooptical spectra of Fe5Si3 and Fe3Si magnetic silicides using spectral magnetoellipsometry. J. Exp. Theor. Phys. 120, 886–893 (2015). https://doi.org/10.1134/S1063776115050155

    Article  ADS  Google Scholar 

  16. M.K. Kolel-Veetil, S.B. Qadri, M. Osofsky, R. Goswami, T.M. Keller, Carbon nanocapsule-mediated formation of ferromagnetic Fe5Si3 nanoparticles. J. Phys. Chem. C 113, 14663–14671 (2009). https://doi.org/10.1021/jp904188f

    Article  Google Scholar 

  17. J.K. Tripathi, P.C. Srivastava, Ion irradiation induced nano granular magnetic Fe5Si3 silicide phase formation in Fe/Si structures. Appl. Surf. Sci. 255, 2767–2772 (2008). https://doi.org/10.1016/j.apsusc.2008.08.035

    Article  ADS  Google Scholar 

  18. I.T. Yoon, Y.H. Kwon, Y. Shon, Ferromagnetic properties of Fe-implanted Si followed by thermal annealing. J. Supercond. Novel Magn. 28, 3623–3627 (2015). https://doi.org/10.1007/s10948-015-3207-2

    Article  Google Scholar 

  19. D. Errandonea, D. Santamaría-Perez, A. Vegas, J. Nuss, M. Jansen, P. Rodríguez-Hernandez, A. Muñoz, Structural stability of Fe5Si3 and Ni2Si studied by high-pressure x-ray diffraction and ab initio total-energy calculations. Phys. Rev. B 77, 094113 (2008). https://doi.org/10.1103/PhysRevB.77.094113

    Article  ADS  Google Scholar 

  20. R. Skomski, P. Kumar, B. Balamurugan, B. Das, P. Manchanda, P. Raghani, A. Kashyap, D.J. Sellmyer, Exchange and magnetic order in bulk and nanostructured Fe5Si3. J. Magn. Magn. Mater. 460, 438–447 (2018). https://doi.org/10.1016/j.jmmm.2018.02.015

    Article  ADS  Google Scholar 

  21. K. Seo, S. Lee, Y. Jo, M.-H. Jung, J. Kim, D.G. Churchill, B. Kim, Room temperature ferromagnetism in single-crystalline Fe5Si3 nanowires. J. Phys. Chem. C 113, 6902–6905 (2009). https://doi.org/10.1021/jp902010j

    Article  Google Scholar 

  22. P.M. Enriquez-Navas, M.L. Garcia-Martin, Application of inorganic nanoparticles for diagnosis based on MRI, in Frontiers of Nanoscience, ed. by J.M. de la Fuente, V. Grazu (Elsevier, Amsterdam, 2012), pp. 233–245. https://doi.org/10.1016/B978-0-12-415769-9.00009-1

    Chapter  Google Scholar 

  23. J. Dobson, Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. 13, 283–287 (2006). https://doi.org/10.1038/sj.gt.3302720

    Article  Google Scholar 

  24. R. Jurgons, C. Seliger, A. Hilpert, L. Trahms, S. Odenbach, C. Alexiou, Drug loaded magnetic nanoparticles for cancer therapy. J. Phys.: Condens. Matter 18, S2893–S2902 (2006). https://doi.org/10.1088/0953-8984/18/38/s24

    Article  ADS  Google Scholar 

  25. S. Senthilarasu, R. Sathyamoorthy, S. Lalitha, Synthesis and characterization of β-FeSi2 grown by thermal annealing of Fe/Si bilayers for photovoltaic applications. Sol. Energy Mater. Sol. Cells 82, 299–305 (2004). https://doi.org/10.1016/j.solmat.2004.01.027

    Article  Google Scholar 

  26. B. Tatar, K. Kutlu, M. Ürgen, Synthesis of β-FeSi2/Si heterojunctions for photovoltaic applications by unbalanced magnetron sputtering. Thin Solid Films 516, 13–16 (2007). https://doi.org/10.1016/j.tsf.2007.04.044

    Article  ADS  Google Scholar 

  27. K. Shimura, K. Yamaguchi, H. Yamamoto, M. Sasase, S. Shamoto, K. Hojou, Photoluminescence of β-FeSi2 thin film prepared by ion beam sputter deposition method. Nucl. Instrum. Methods Phys. Res., Sect. B 242, 673–675 (2006). https://doi.org/10.1016/j.nimb.2005.08.175

    Article  ADS  Google Scholar 

  28. D. Santamarı́a-Pérez, J. Nuss, J. Haines, M. Jansen, A. Vegas, Iron silicides and their corresponding oxides: a high-pressure study of Fe5Si3. Solid State Sci. 6, 673–678 (2004). https://doi.org/10.1016/j.solidstatesciences.2004.03.027

    Article  ADS  Google Scholar 

  29. Y. Maeda, K. Umezawa, Y. Hayashi, K. Miyake, K. Ohashi, Photovoltaic properties of ion-beam synthesized β-FeSi2/n-Si heterojunctions. Thin Solid Films 381, 256–261 (2001). https://doi.org/10.1016/S0040-6090(00)01753-3

    Article  ADS  Google Scholar 

  30. L. Antwis, L. Wong, A. Smith, K. Homewood, C. Jeynes, R. Gwilliam, Optimization and characterisation of amorphous iron disilicide formed by ion beam mixing of Fe/Si multilayer structures for photovoltaic applications. AIP Conf. Proc. 1321, 278–281 (2011). https://doi.org/10.1063/1.3548379

    Article  ADS  Google Scholar 

  31. H. Katsumata, Y. Makita, N. Kobayashi, H. Shibata, M. Hasegawa, I. Aksenov, S. Kimura, A. Obara, S. Uekusa, Optical absorption and photoluminescence studies of β-FeSi2 prepared by heavy implantation of Fe+ ions into Si. J. Appl. Phys. 80, 5955–5962 (1996). https://doi.org/10.1063/1.363591

    Article  ADS  Google Scholar 

  32. M. Naito, M. Ishimaru, Formation process of β-FeSi2 from amorphous Fe–Si synthesized by ion implantation: Fe concentration dependence. J. Microsc. 236, 123–127 (2009). https://doi.org/10.1111/j.1365-2818.2009.03270.x

    Article  MathSciNet  Google Scholar 

  33. H.T. Lu, L.J. Chen, Y.L. Chueh, L.J. Chou, Formation of light-emitting FeSi2 in Fe thin films on ion-implanted (111)Si. J. Appl. Phys. 93, 1468–1471 (2003). https://doi.org/10.1063/1.1534379

    Article  ADS  Google Scholar 

  34. Y.T. Chong, Q. Li, C.F. Chow, N. Ke, W.Y. Cheung, S.P. Wong, K.P. Homewood, The effect of ion implantation energy and dosage on the microstructure of the ion beam synthesized FeSi2 in Si. Mater. Sci. Eng., B 124–125, 444–448 (2005). https://doi.org/10.1016/j.mseb.2005.08.042

    Article  Google Scholar 

  35. W.J. Lakshantha, V.C. Kummari, T. Reinert, F.D. McDaniel, B. Rout, Depth profile investigation of β-FeSi2 formed in Si(100) by high fluence implantation of 50 keV Fe ion and post-thermal vacuum annealing. Nucl. Instrum. Methods Phys. Res., Sect. B 332, 33–36 (2014). https://doi.org/10.1016/j.nimb.2014.02.024

    Article  ADS  Google Scholar 

  36. G.G. Gumarov, D.A. Konovalov, A.V. Alekseev, VYu. Petukhov, V.A. Zhikharev, V.I. Nuzhdin, V.A. Shustov, Scanning MOKE investigation of ion-beam-synthesized silicide films. Nucl. Instrum. Methods Phys. Res., Sect. B 282, 92–95 (2012). https://doi.org/10.1016/j.nimb.2011.08.056

    Article  ADS  Google Scholar 

  37. K. Omae, I.-T. Bae, M. Naito, M. Ishimaru, Y. Hirotsu, J.A. Valdez, K.E. Sickafus, Structural evolution in Fe ion implanted Si upon thermal annealing. Nucl. Instrum. Methods Phys. Res., Sect. B 250, 300–302 (2006). https://doi.org/10.1016/j.nimb.2006.04.127

    Article  ADS  Google Scholar 

  38. M. Naito, M. Ishimaru, Y. Hirotsu, J.A. Valdez, K.E. Sickafus, Transmission electron microscopy study on ion-beam-synthesized amorphous Fe–Si thin layers. Appl. Phys. Lett. 87, 241905 (2005). https://doi.org/10.1063/1.2142101

    Article  ADS  Google Scholar 

  39. T.H. Yang, Y.L. Chueh, H.C. Chen, L.J. Chen, L.J. Chou, Auto-correlation function analysis of phase formation in iron ion-implanted amorphous silicon layers. Thin Solid Films 461, 126–130 (2004). https://doi.org/10.1016/j.tsf.2004.02.085

    Article  ADS  Google Scholar 

  40. B. Rout, M.S. Dhoubhadel, P.R. Poudel, V.C. Kummari, B. Pandey, N.T. Deoli, W.J. Lakshantha, S.J. Mulware, J. Baxley, J.E. Manuel, J.L. Pacheco, S. Szilasi, D.L. Weathers, T. Reinert, G.A. Glass, J.L. Duggan, F.D. McDaniel, An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL). AIP Conf. Proc. 1544, 11–18 (2013). https://doi.org/10.1063/1.4813454

    Article  ADS  Google Scholar 

  41. J.F. Ziegler, The stopping and range of ions in solids, in Ion Implantation Science and Technology, 2nd edn., ed. by J.F. Ziegler (Academic Press, Cambridge, 1988), pp. 3–61. https://doi.org/10.1016/B978-0-12-780621-1.50005-8

    Chapter  Google Scholar 

  42. J.P. Biersack, L.G. Haggmark, A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nuclear Instrum. Methods. 174, 257–269 (1980). https://doi.org/10.1016/0029-554X(80)90440-1

    Article  ADS  Google Scholar 

  43. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—the stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818–1823 (2010). https://doi.org/10.1016/j.nimb.2010.02.091

    Article  ADS  Google Scholar 

  44. A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, SDTrimSP Version 5.00 (2018)

  45. G.S. Was, S. Taller, Z. Jiao, A.M. Monterrosa, D. Woodley, D. Jennings, T. Kubley, F. Naab, O. Toader, E. Uberseder, Resolution of the carbon contamination problem in ion irradiation experiments. Nucl. Instrum. Methods Phys. Res., Sect. B 412, 58–65 (2017). https://doi.org/10.1016/j.nimb.2017.08.039

    Article  ADS  Google Scholar 

  46. J. Wang, M.B. Toloczko, K. Kruska, D.K. Schreiber, D.J. Edwards, Z. Zhu, J. Zhang, Carbon contamination during ion irradiation—accurate detection and characterization of its effect on microstructure of ferritic/martensitic steels. Sci. Rep. 7, 15813 (2017). https://doi.org/10.1038/s41598-017-15669-y

    Article  ADS  Google Scholar 

  47. W.J. Lakshantha, F.D. McDaniel, B. Rout, Formation and characterization of embedded Fe3Si binary structures in Si. J. Appl. Phys. 125, 195301 (2019). https://doi.org/10.1063/1.5091541

    Article  ADS  Google Scholar 

  48. A.L. Patterson, The scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  ADS  MATH  Google Scholar 

  49. J. Frenkel, J. Doefman, Spontaneous and induced magnetisation in ferromagnetic bodies. Nature 126, 274–275 (1930). https://doi.org/10.1038/126274a0

    Article  ADS  MATH  Google Scholar 

  50. A. Akbarzadeh, M. Samiei, S. Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7, 144 (2012). https://doi.org/10.1186/1556-276X-7-144

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was performed in part at the University of North Texas’s Materials Research Facility. The authors would like to thank Dr. Andreas Mutzke from the Max-Planck-Institute of Plasma Physics, Germany, for providing the latest version of the SDTrimSP simulation code. Support from Advanced Materials and Manufacturing Processes Institute (AMMPI) at the University of North Texas is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhudutta Rout.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Young, J.M., Jones, D.C. et al. Observation of room-temperature superparamagnetic behavior of Fe5Si3 nanocrystals synthesized via 50 keV Fe ion implantation in silicon. Appl. Phys. A 126, 232 (2020). https://doi.org/10.1007/s00339-020-3417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3417-8

Keywords

Navigation