Skip to main content

New Approaches to Soil Disinfestation for Specialty Crops

  • Living reference work entry
  • First Online:
Handbook of Vegetable and Herb Diseases

Part of the book series: Handbook of Plant Disease Management ((HPDM))

Abstract

Soil disinfestation is a method of pest control that has been practiced since the late 1800s, with the application of steam. This was followed by the development of chloropicrin for soil fumigation in the 1920s. In the 1950s, the introduction of methyl bromide as a soil fumigant changed numerous specialty crop agricultural production systems forever. This broad-spectrum fumigant provided pest control for major vegetable and berry fruit crops, particularly in California and Florida for more than 50 years. It allowed growers to dramatically increase yields, but its loss due to its negative impact on the ozone layer left producers without a stand-alone tool to control existing and emerging pests. In the last 20 years, focused research has resulted in the optimization of application strategies for existing alternative chemical fumigants, the development of new chemicals, and extraordinary progress in utilizing non-chemical soil disinfestation methods and biologically based systems for pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Achmon Y, Fernández‐Bayo JD, Hernandez K, McCurry DG, Harrold DR, Su J, Dahlquist‐Willard RM, Stapleton JJ, VanderGheynst JS, Simmons CW (2017) Weed seed inactivation in soil mesocosms via biosolarization with mature compost and tomato processing waste amendments. Pest management science 73:862–73

    Google Scholar 

  • Adkins S, Webster CG, Baker CA, Weaver R, Rosskopf EN, Turechek WW (2009) Detection of three whitefly-transmitted viruses infecting the cucurbit weed Cucumis melo var. dudaim in Florida. Plant Health Prog 10:39

    Article  Google Scholar 

  • Altenburger A, Bender M, Ekelund F, Elmholt S, Jacobsen CS (2014) Steam-treatment-based soil remediation promotes heat-tolerant, potentially pathogenic microbiota. Environ Technol 35(6):773–780

    Article  CAS  PubMed  Google Scholar 

  • Baggio JS, Chamorro M, Cordova LG, Noling JW, Vallad GE, Peres NA (2018) Effect of formulations of allyl isothiocyanate on survival of Macrophomina phaseolina from strawberry. Plant Dis 102(11):2212–2219

    Article  CAS  PubMed  Google Scholar 

  • Baggio JS, Forcelini BB, Wang NY, Ruschel RG, Mertely JC, Peres NA (2021) Outbreak of leaf spot and fruit rot in Florida strawberry caused by Neopestalotiopsis spp. Plant Dis 105(2):305–315

    Article  CAS  Google Scholar 

  • Blok WJ, Lamers JG, Termorshuizen AJ, Bollen GJ (2000) Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 90:253–9

    Google Scholar 

  • Boyd, NS, Vallad G, Wu F, Noling J, Guan, Z (2017) Placement of metam potassium in combination with dimethyl disulfide, chloropicrin, and 1, 3-dichloropropene for Cyperus rotundus L. and broadleaf weed control in tomato (Solanum lycopersicum L.). Crop Protection 100:45–50

    Google Scholar 

  • Boyd N, Freeman J, Vallad G (2019) Evaluation of XRC-245 as a soil fumigant for Florida vegetables. In: Proceedings of the annual international research conference on methyl bromide alternatives and emissions reductions. Available via: https://www.mbao.org/static/docs/confs/2019-sandiego/papers/8boyd__nathan_s._xrc_245.pdf. Accessed 10 Nov 2021

  • Butler DM, Kokalis-Burelle N, Muramoto J, Shennan C, McCollum TG, Rosskopf EN (2012) Impact of anaerobic soil disinfestation combined with soil solarization on plant–parasitic nematodes and introduced inoculum of soilborne plant pathogens in raised-bed vegetable production. Crop Prot 39:33–40

    Article  CAS  Google Scholar 

  • Butler DM, Kokalis-Burelle N, Albano JP, McCollum TG, Muramoto J, Shennan C, Rosskopf EN (2014) Anaerobic soil disinfestation (ASD) combined with soil solarization as a methyl bromide alternative: vegetable crop performance and soil nutrient dynamics. Plant Soil 378(1):365–381

    Article  CAS  Google Scholar 

  • Byron M, Treadwell DD and Dittmar PJ (2019) Weeds as Reservoirs of Plant Pathogens Affecting Economically Important Crops: HS1335, 9/2019. EDIS, 2019(5):7–7.

    Google Scholar 

  • Cao A, Chu S, Guo M, Duan X, Yuan H, Qi S (2002) Sulfuryl fluoride – a potential alternative to methyl bromide in soil fumigation. Chinese J Pestic Sci 4(3):91–93

    Google Scholar 

  • Carlesi S, Martelloni L, Bigongiali F, Frasconi C, Fontanelli M, Bàrberi P (2021) Effects of band steaming on weed control, weed community diversity and composition and yield in organic carrot at three Mediterranean sites. Weed Res 61(5):385–395

    Article  Google Scholar 

  • Chellemi DO, Olson SM, Mitchell DJ, Secker I, McSorley R (1997) Adaptation of soil solarization to the integrated management of soilborne pests of tomato under humid conditions. Phytopathology 87(3):250–258

    Article  CAS  PubMed  Google Scholar 

  • Church G, Rosskopf E, Holzinger J (2004) Evaluation of DMDS for production of ornamental cockscomb (Celosia argentea). In Proc. Annual Int. Res. Conference on Methyl Bromide Alternatives and Emissions Reductions. MBAO pp. 87–1

    Google Scholar 

  • Culpepper AS, Smith JC, Dutta B (2017) Vegetable fumigant systems for plasticulture in Georgia. University of Georgia extension circular 1068

    Google Scholar 

  • Desmarchelier JM, Ren YL (1996) Cyanogen as a fumigant and application method. International Patent Appellation IPPCT/AUS 95/00409

    Google Scholar 

  • Di Gioia F, Petropoulos SA (2021) Glucosinolates. In: Galanakis CM (ed) Food bioactives and health. Springer, Cham. https://doi.org/10.1007/978-3-030-57469-7_2

    Chapter  Google Scholar 

  • Di Gioia F, Ozores-Hampton M, Hong JC, Kokalis-Burelle N, Albano J, Zhao X, Black Z, Gao Z, Wilson C, Thomas J, Moore K, Swisher M, Guo H, Rosskopf EN (2016) The effects of anaerobic soil disinfestation on weed and nematode control, fruit yield and quality of Florida fresh market tomato. HortScience 51:703–711

    Article  CAS  Google Scholar 

  • Di Gioia F, Ozores-Hampton M, Zhao X, Thomas J, Wilson P, Li Z, Hong J, Albano J, Swisher M, Rosskopf E (2017) Anaerobic soil disinfestation impact on soil nutrients dynamics and nitrous oxide emissions in fresh-market tomato. Agric Ecosyst Environ 240:194–205

    Article  Google Scholar 

  • Di Gioia F, Hong JC, Ozores-Hampton M, Zhao X, Wilson C, Thomas J, Li Z, Pisani C, Guo H, Paudel B, Albano J, Butler DM, Rosskopf EN (2020) Anaerobic soil disinfestation: nutrient cycling and potential environmental impact. Acta Hortic 1270:51–62

    Article  Google Scholar 

  • Duniway JM (2002) Status of chemical alternatives to methyl bromide for pre-plant fumigation of soil. Phytopathology 92:1337–1343

    Article  CAS  PubMed  Google Scholar 

  • Eure PM, Culpepper AS (2017) Bell pepper and weed response to dimethyl disulfide plus chloropicrin and herbicide systems. Weed Technol 31(5):694–700

    Article  Google Scholar 

  • Fang W, Yan D, Huang B, Ren Z, Wang X, Liu X, Li Y, Ouyang C, Migheli Q, Cao A, Wang Q (2019) Biochemical pathways used by microorganisms to produce nitrous oxide emissions from soils fumigated with dimethyl disulfide or allyl isothiocyanate. Soil Biol Biochem 132:1–13

    Article  CAS  Google Scholar 

  • Fennimore SA, Goodhue RE (2016) Soil disinfestation with steam: a review of economics, engineering, and soil pest control in California strawberry. Int J Fruit Sci 16:71–83

    Article  Google Scholar 

  • Fennimore SA, Martin FN, Miller TC, Broome JC, Dorn N, Greene I (2014) Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542–1549

    Article  Google Scholar 

  • Fernández-Bayo JD, Achmon Y, Harrold DR, Claypool JT, Simmons BA, Singer SW, Dahlquist-Willard RM, Stapleton JJ, VanderGheynst JS, Simmons CW (2017a) Comparison of soil biosolarization with mesophilic and thermophilic solid digestates on soil microbial quantity and diversity. Appl Soil Ecol 119:183–191

    Article  Google Scholar 

  • Fernández-Bayo JD, Achmon Y, Harrold DR, McCurry DG, Hernandez K, Dahlquist-Willard RM, Stapleton JJ, VanderGheynst JS, Simmons CW (2017b) Assessment of two solid anaerobic digestate soil amendments for effects on soil quality and biosolarization efficacy. J Agric Food Chem 65(17):3434–3442

    Article  PubMed  Google Scholar 

  • Fernández-Bayo JD, Shea EA, Parr AE, Achmon Y, Stapleton JJ, VanderGheynst JS, Hodson AK, Simmons CW (2020) Almond processing residues as a source of organic acid biopesticides during biosolarization. Waste Manag 101:74–82

    Article  PubMed  Google Scholar 

  • French-Monar RD, Jones JB, Roberts PD (2006) Characterization of Phytophthora capsici associated with roots of weeds on Florida vegetable farms. Plant Dis 90:345–350

    Article  CAS  PubMed  Google Scholar 

  • Fritsch J (2005) Dimethyl disulfide as a new chemical potential alternative to methyl bromide in soil disinfestation in France. Acta Hortic 698:71–76

    Article  CAS  Google Scholar 

  • Fritsch J, Fouillet T, Charles P, Fargier-Puech P, Ramponi-Bur C, Descamps S, Du Fretay G, Myrta A (2014) French experiences with dimethyl disulfide (DMDS) as a nematicide in vegetable crops. Acta Hortic 1044:427–433

    Article  Google Scholar 

  • Gamliel A, Katan J (2017) Soil solarization: theory and practice. APS Press, St. Paul

    Book  Google Scholar 

  • Gamliel A, Stapleton JJ (1997) Improvement of soil solarization with volatile compounds generated from organic amendments. Phytoparasitica 25:S31

    Google Scholar 

  • Gamliel A, Van Bruggen AHC (2016) Maintaining soil health for crop production in organic greenhouses. Sci Hortic 208:120–130

    Article  Google Scholar 

  • Gay P, Piccarolo P, Ricauda Aimonino D, Tortia C (2010) A high efficacy steam soil disinfestation system, part II: design and testing. Biosyst Eng 107(3):194–201

    Article  Google Scholar 

  • Gay P, Ricauda Aimonino D, Tortia C, Gilardi G (2014) Time-temperature effect on soil-borne pathogens. Acta Hortic 1044:231–236

    Article  Google Scholar 

  • Gilardi G, Gullino ML, Garibaldi A, Ricauda Aimonino D, Luongo I (2014) Different steaming methods to control Fusarium wilt agents under simulated conditions. Acta Hortic 1044:237–242

    Article  Google Scholar 

  • Gómez-Tenorio MA, Zanón MJ, de Cara M, Lupión B, Tello JC (2015) Efficacy of dimethyl disulfide (DMDS) against Meloidogyne sp. and three formae speciales of Fusarium oxysporum under controlled conditions. Crop Prot 78:263–269

    Article  Google Scholar 

  • Guerra N, Fennimore SA, Siemens MC, Goodhue RE (2022) Band Steaming for Weed and Disease Control in Leafy Greens and Carrots. HortScience 11:1453–9

    Google Scholar 

  • Guo H, Di Gioia F, Zhao X, Ozores-Hampton M, Swisher ME, Hong J, Kokalis-Burelle N, DeLong AN, Rosskopf EN (2017) Optimizing anaerobic soil disinfestation for fresh market tomato production: Nematode and weed control, yield, and fruit quality. Scientia Horticulturae 218:105–16

    Google Scholar 

  • Guo H, Zhao X, Rosskopf EN, Di Gioia F, Hong JC, McNear DH Jr (2018) Impacts of anaerobic soil disinfestation and chemical fumigation on soil microbial communities in field tomato production system. Appl Soil Ecol 126:165–173

    Article  Google Scholar 

  • Henry PM, Haugland M, Lopez L, Munji M, Watson DC, Gordon TR (2020) The potential for Fusarium oxysporum f. sp. fragariae, cause of fusarium wilt of strawberry, to colonize organic matter in soil and persist through anaerobic soil disinfestation. Plant Pathol 69:1218–1226

    Article  CAS  Google Scholar 

  • Hewavitharana SS, Mazzola M (2016) Carbon source-dependent effects of anaerobic soil disinfestation on soil microbiome and suppression of Rhizoctonia solani AG-5 and Pratylenchus penetrans. Phytopathology 106(9):1015–1028

    Article  CAS  PubMed  Google Scholar 

  • Hewavitharana SS, Ruddell D, Mazzola M (2014) Carbon source-dependent antifungal and nematicidal volatiles derived during anaerobic soil disinfestation. Eur J Plant Pathol 140(1):39–52

    Article  CAS  Google Scholar 

  • Hewavitharana SS, Klarer E, Reed AJ, Leisso R, Poirier B, Honaas L, Rudell DR, Mazzola M (2019) Temporal dynamics of the soil metabolome and microbiome during simulated anaerobic soil disinfestation. Front Microbiol 10:2365

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffmann M, Ajwa HA, Westerdahl BB, Koike ST, Stanghellini M, Wilen C, Fennimore SA (2020) Multitactic preplant soil fumigation with allyl isothiocyanate in cut flowers and strawberry. HortTechnology 30(2):251–258

    Article  CAS  Google Scholar 

  • Holmes GJ, Mansouripour SM, Hewavitharana SS (2020) Strawberries at the crossroads: management of soilborne diseases in California without methyl bromide. Phytopathology 110(5):956–968

    Article  CAS  PubMed  Google Scholar 

  • Hong JC, Di Gioia F, Jones JB, Turechek W, Kokalis-Burelle N, Johns CW, Finley NL, Ozores-Hampton M, McCollum G, Rosskopf EN (2020) Defining anaerobic soil disinfestation through changes in the microbiome. Acta Hortic 1270:97–110

    Article  Google Scholar 

  • Katan J (1984) Soil solarization. Acta Hortic 152:227–236

    Article  Google Scholar 

  • Katan J, DeVay JE (1991) Soil solarization. CRC Press, Boca Raton, p 267

    Google Scholar 

  • Katan J, Greenberger A, Alon H, Grinstein A (1976) Solar heating by polyethylene mulching for the control of diseases caused by soilborne pathogens. Phytopathology 66:683–688

    Article  Google Scholar 

  • Khadka RB, Miller SA (2021) Synergy of anaerobic soil disinfestation and Trichoderma spp. in Rhizoctonia root rot suppression. Front Sustain Food Syst 5:76

    Article  Google Scholar 

  • Khatri K, Peres N, Noling J, Boyd N (2020) Purple nutsedge management in Florida strawberry with herbicides and a modified Florida 3-way fumigation program. HortTechnology 30(3):433–436

    Article  CAS  Google Scholar 

  • Kim DS, Hoffmann M, Kim S, Scholler BA, Fennimore SA (2020) Integration of steam with allyl-isothiocyanate for soil disinfestation. HortScience 55(6):920–925

    Article  CAS  Google Scholar 

  • Kim DS, Kim S, Fennimore SA (2021) Evaluation of broadcast steam application with mustard seed meal in fruiting strawberry. HortScience 56(4):500–505

    Article  CAS  Google Scholar 

  • Kirkegaard JA, Sarwar M (1998) Biofumigation potential of brassicas. Plant Soil 201(1):71–89

    Article  CAS  Google Scholar 

  • Kirkegaard JA, Wong PTW, Desmarchelier JM (1996) In vitro suppression of fungal root pathogens of cereals by Brassica tissues. Plant Pathol 45(3):593–603

    Article  Google Scholar 

  • Klein E, Katan J, Gamliel A (2011) Soil suppressiveness to Fusarium disease following organic amendments and solarization. Plant Dis 95:1116–1123

    Article  PubMed  Google Scholar 

  • Koike ST (2008) Crown rot of strawberry caused by Macrophomina phaseolina in California. Plant Dis 92:1253–1253

    Article  CAS  PubMed  Google Scholar 

  • Koike ST, Gordon TR (2015) Management of Fusarium wilt of strawberry. Crop Prot 73:67–72

    Article  CAS  Google Scholar 

  • Koike ST, Kirkpatrick SC, Gordon TR (2009) Fusarium wilt of strawberry caused by Fusarium oxysporum in California. Plant Dis 93(10):1077–1077

    Article  CAS  PubMed  Google Scholar 

  • Kokalis-Burelle N, Butler DM, Hong JC, Bausher MG, McCollum G, Rosskopf EN (2016a) Grafting and Paladin Pic-21 for nematode and weed management in vegetable production. J Nematol 48(4):231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokalis-Burelle N, Rosskopf EN, Butler DM, Fennimore SA, Holzinger J (2016b) Evaluation of steam and soil solarization for Meloidogyne arenaria control in Florida floriculture crops. J Nematol 48(3):183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaMondia JA, Brodie BB, Brucato ML (1986) Management of Globodera rostochiensis as influenced by nematode population densities and soil type. J Nematol 18(1):74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Di Gioia F, Hwang JI, Hong J, Ozores-Hampton M, Zhao X, Pisani C, Rosskopf E, Wilson PC (2020) Dissipation of fomesafen in fumigated anaerobic soil disinfestation-treated and organic-amended soil in Florida tomato production systems. Pest Manag Sci 76(2):628–635

    Article  CAS  PubMed  Google Scholar 

  • Lopes EA, Dallemole-Giaretta R, dos Santos NW, Parreira DF, Ferreira PA (2019) Eco-friendly approaches to the management of plant-parasitic nematodes. In: Ansari R, Mahmood I (eds) Plant health under biotic stress. Springer, Singapore, pp 167–186

    Chapter  Google Scholar 

  • Martin FN (2003) Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annu Rev Phytopathol 41(1):325–350

    Article  CAS  PubMed  Google Scholar 

  • Mattner SW, Gregorio R, Ren YL, Hyland TW, Gounder RK, Sarwar M, Porter IJ (2003) Application techniques influence the efficacy of ethanedinitrile (C2N2) for soil disinfestation. In: Annual international research conference on methyl bromide alternatives and emissions reductions. Available via: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.657.4802&rep=rep1&type=pdf. Accessed 10 Nov 2021

  • Mazzola M, Muramoto J, Shennan C (2018) Anaerobic disinfestation induced changes to the soil microbiome, disease incidence and strawberry fruit yields in California field trials. Appl Soil Ecol 127:74–86

    Article  Google Scholar 

  • McSorley R, Wang K-H, Kokalis-Burelle N, Church G (2006) Effects of soil type and steam on nematode biological control potential of the rhizosphere community. Nematropica 36(2):197–214

    Google Scholar 

  • Mertely J, Seijo T, Peres N (2005) First report of Macrophomina phaseolina causing a crown rot of strawberry in Florida. Plant Dis 89(4):434

    Article  CAS  PubMed  Google Scholar 

  • Michuda A, Goodhue RE, Hoffmann M, Fennimore SA (2021) Predicting net returns of organic and conventional strawberry following soil disinfestation with steam or steam plus additives. Agronomy 11(1):149

    Article  CAS  Google Scholar 

  • Momma N, Kobara Y, Uematsu S, Kita N, Shinmura A (2013) Development of biological soil disinfestations in Japan. Appl Microbiol Biotechnol 97(9):3801–3809

    Article  CAS  PubMed  Google Scholar 

  • Muramoto J, Shennan C, Baird G, Zavatta M, Koike ST, Bolda MP, Daugovish O, Dara SK, Klonsky K, Mazzola M (2014) Optimizing anaerobic soil disinfestation for California strawberry. Acta Hortic 1044:215–220

    Article  Google Scholar 

  • Paudel B, Di Gioia F, Zhao X, Ozores-Hampton M, Hong J, Kokalis-Burelle N, Pisani C, Rosskopf E (2020) Evaluating anaerobic soil disinfestation and other biological soil management strategies for open-field tomato production in Florida. Renew Agric Food Syst 35(3):274–285

    Article  Google Scholar 

  • Peruzzi A, Raffaelli M, Frasconi C, Fontanelli M, Bàrberi P (2012) Influence of an injection system on the effect of activated soil steaming on Brassica juncea and the natural weed seedbank. Weed Res 52(2):140–152

    Article  CAS  Google Scholar 

  • Raffaelli M, Martelloni L, Frasconi C, Fontanelli M, Carlesi S, Peruzzi A (2016) A prototype band-steaming machine: design and field application. Biosyst Eng 144:61–71

    Article  Google Scholar 

  • Ren YL, Sarwar M, Wright EJ (2002) Development of cyanogen for soil fumigation. In: Annual international research conference on methyl bromide alternatives and emissions reductions. Available via: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.656.329&rep=rep1&type=pdf. Accessed 10 Nov 2021

  • Ren YL, Waterford CJ, Matthiessen JN, Mattner S, Gregorio R, Sarwar M (2003) First results from ethanedinitrile (C2N2) field trials in Australia. In: Annual international research conference on methyl bromide alternatives and emissions reductions. Available via: https://publications.csiro.au/publications/publication/PIprocite:ff242df1-0923-4895-a23a-b478cde6f325. Accessed 10 Nov 2021

  • Ristaino JB, Thomas W (1997) Agriculture methyl bromide and the ozone hole: can we fill the gaps? Plant Dis 81(9):964–977

    Article  PubMed  Google Scholar 

  • Rosskopf EN, Chellemi DO, Kokalis-Burelle N, Church GT (2005) Alternatives to methyl bromide: a Florida perspective. Plant Health Prog 6(1):19

    Article  Google Scholar 

  • Rosskopf EN, Kokalis-Burelle N, Peterson GL, Waterford C (2007) Preliminary investigation of ethanedinitrile for control of weeds and nematodes important to Florida production system. In: Annual international research conference on methyl bromide alternatives and emissions reductions. Available via: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.544.3663. Accessed 10 Nov 2021

  • Rosskopf EN, Serrano-Pérez P, Hong J, Shrestha U, del Carmen Rodríguez-Molina M, Martin K, Kokalis-Burelle N, Shennan C, Muramoto J, Butler D (2015) Anaerobic soil disinfestation and soilborne pest management. In: Meghvansi MK, Varma A (eds) Organic amendments and soil suppressiveness in plant disease management. Springer, Cham, pp 277–305

    Chapter  Google Scholar 

  • Rosskopf E, Kokalis-Burelle N, Fennimore S, Wilen C (2018) Soil/media disinfestation for management of florists’ crops diseases. In: McGovern RJ, Elmer WH (eds) Handbook of florists’ crops diseases. Springer, Cham

    Google Scholar 

  • Rosskopf E, Di Gioia F, Hong JC, Pisani C, Kokalis-Burelle N (2020a) Organic amendments for pathogen and nematode control. Annu Rev Phytopathol 58:277–311

    Article  CAS  PubMed  Google Scholar 

  • Rosskopf EN, Hong JC, Kokalis-Burelle N, Pisani C, Di Gioia F, Jones JB, Booker B, Keely M, Aglave B, Yates-Yarbrough S, Sances F (2020b) Evaluation of Dominus® (allylisothiocyanate) for tomato and bell pepper production. Acta Hortic 1270:337–346

    Article  Google Scholar 

  • Rosskopf EN, Di Gioia F, Hong JC, Ozores-Hampton M, Zhao X, Black Z, Gao Z, Wilson C, Thomas J, Jones JB, Butler DM, Shrestha U, Sattanno K, DeLong A, Swisher M, Kokalis-Burelle N, Wang J, Li Z, Shi L, Pisani C, Guo H, Zhu Q, Paudel B, Johns CW, Finley NL, Muramoto J, Albano J, Shennan C (2020c) Anaerobic soil disinfestation: areawide project on obstacles and adoption. Acta Hortic 1270:23–36

    Article  Google Scholar 

  • Roux-Michollet D, Czarnes S, Adam B, Berry D, Commeaux C, Guillaumaud N, Le Roux X, Clays-Josserand A (2008) Effects of steam disinfestation on community structure abundance and activity of heterotrophic, denitrifying and nitrifying bacteria in an organic farming soil. Soil Biol Biochem 40(7):1836–1845

    Article  CAS  Google Scholar 

  • Roux-Michollet D, Dudal Y, Jocteur-Monrozier L, Czarnes S (2010) Steam treatment of surface soil: how does it affect water-soluble organic matter, C mineralization, and bacterial community composition? Biol Fertil Soils 46(6):607–616

    Article  CAS  Google Scholar 

  • Samtani JB, Gilbert C, Weber JB, Subbarao KV, Goodhue RE, Fennimore SA (2012) Effect of steam and solarization treatments on pest control, strawberry yield, and economic returns relative to methyl bromide fumigation. HortScience 47(1):64–70

    Article  CAS  Google Scholar 

  • Sanabria-Velazquez AD, Testen AL, Khadka RB, Liu Z, Xu F, Miller SA (2020) Anaerobic soil disinfestation reduces viability of Sclerotinia sclerotiorum and S. minor sclerotia and root-knot nematodes in muck soils. Phytopathology 110(4):795–804

    Article  CAS  PubMed  Google Scholar 

  • Schneir A, Clark RF, Kene M, Betten D (2008) Systemic fluoride poisoning and death from inhalational exposure to sulfuryl fluoride. Clin Toxicol 46(9):850–854

    Article  CAS  Google Scholar 

  • Schroeder J, Thomas SH, Murray L (1993) Yellow and purple nutsedge and Chile peppers host southern root-knot nematode. Weed Sci 41(1):150–156

    Article  Google Scholar 

  • Shennan C, Muramoto J, Koike S, Baird G, Fennimore S, Samtani J, Bolda M, Dara S, Daugovish O, Lazarovits G, Butler D (2018) Anaerobic soil disinfestation is an alternative to soil fumigation for control of some soilborne pathogens in strawberry production. Plant Pathol 67(1):51–66

    Article  CAS  Google Scholar 

  • Shi L, Wang J, Gao Z, Zhao X, Di Gioia F, Guo H, Hong JC, Ozores-Hampton M, Rosskopf E (2019) Economic analysis of anaerobic soil disinfestation for open-field fresh-market tomato production in southwest and North Florida. HortTechnology 29(6):777–787

    Article  CAS  Google Scholar 

  • Shinmura A (2004) Principle and effect of soil sterilization method by reducing redox potential of soil. PSJ soil-borne dis workshop report 2004, 22:2–12. (in Japanese with English Summary)

    Google Scholar 

  • Simmons CW, Higgins B, Staley S, Joh LD, Simmons BA, Singer SW, Stapleton JJ, VanderGheynst JS (2016) The role of organic matter amendment level on soil heating, organic acid accumulation, and development of bacterial communities in solarized soil. Applied Soil Ecology 106:37–46

    Google Scholar 

  • Smith BJ, Ren Y, Waterford CJ (2003) Response of seed-born fungi to fumigation with ethanedinitrile at various dosages. In: Proceedings of the Australian postharvest technical conference. Available via: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1043.2974&rep=rep1&type=pdf. Accessed 10 Nov 2021

  • Spokas K, Wang D (2003) Stimulation of nitrous oxide production resulted from soil fumigation with chloropicrin. Atmos Environ 37(25):3501–3507

    Article  CAS  Google Scholar 

  • Stapleton JJ, DeVay JE (1986) Soil solarization: a non-chemical approach for management of plant pathogens and pests. Crop Prot 5(3):190–198

    Article  Google Scholar 

  • Stevens M, Freeman J (2017) Soil persistence of dimethyl disulfide combined with chloropicrin after repeated applications. Crop Prot 98:143–148

    Article  CAS  Google Scholar 

  • Stevens M, Freeman J (2018) Efficacy of dimethyl disulfide and metam sodium combinations for the control of nutsedge species. Crop Protection 110:131–134

    Google Scholar 

  • Stevens MC, Freeman JH, Boyd NS (2019) Impact of ethanedinitrile rates and application method on nutsedge species and tomato root galling. Crop Protection 116:1–6

    Google Scholar 

  • Stevens MC, Yang R, Freeman JH (2020) Deposition and transformation of nitrogen after soil fumigation with ethanedinitrile. HortScience 55(12):2023–2027

    Article  CAS  Google Scholar 

  • Testen AL, Miller SA (2019) Anaerobic soil disinfestation to manage soilborne diseases in muck soil vegetable production systems. Plant Dis 103(7):1757–1762

    Article  CAS  PubMed  Google Scholar 

  • Testen AL, Martínez MB, Madrid AJ, Deblais L, Taylor CG, Paul PA, Miller SA (2021a) On-farm evaluations of anaerobic soil disinfestation and grafting for management of a widespread soilborne disease complex in protected culture tomato production. Phytopathology 111:954–965

    Article  CAS  PubMed  Google Scholar 

  • Testen AL, Rotondo F, Mills MP, Horvat MM, Miller SA (2021b) Evaluation of agricultural byproducts and cover crops as anaerobic soil disinfestation carbon sources for managing a soilborne disease complex in high tunnel tomatoes. Front Sustain Food Syst 5:145

    Article  Google Scholar 

  • Thomas SH, Schroeder J, Murray LW (2005) The role of weeds in nematode management. Weed Sci 53(6):923–928

    Article  CAS  Google Scholar 

  • Tsai WT (2010) Environmental and health risks of sulfuryl fluoride a fumigant replacement for methyl bromide. J Environ Sci Health C 28(2):125–145

    Article  CAS  Google Scholar 

  • van Bruggen AH, Gamliel A, Finckh MR (2016) Plant disease management in organic farming systems. Pest Manag Sci 72(1):30–44

    Article  PubMed  Google Scholar 

  • van Loenen MC, Turbett Y, Mullins CE, Feilden NE, Wilson MJ, Leifert C, Seel WE (2003) Low temperature–short duration steaming of soil kills soil-borne pathogens nematode pests and weeds. Eur J Plant Pathol 109(9):993–1002

    Article  Google Scholar 

  • Vecchia L, Di Gioia F, Ferrante A, Hong JC, White C, Rosskopf EN (2020) Integrating cover crops as a source of carbon for anaerobic soil disinfestation. Agronomy 10(10):1614

    Article  CAS  Google Scholar 

  • Webster CG, Kousik CS, Roberts PD, Rosskopf EN, Turechek WW, Adkins S (2011) Cucurbit yellow stunting disorder virus detected in pigweed in Florida. Plant Dis 95(3):360–360

    Article  CAS  PubMed  Google Scholar 

  • Wheatley RE, Ritz K, Crabb D, Caul S (2001) Temporal variations in potential nitrification dynamics in soil related to differences in rates and types of carbon and nitrogen inputs. Soil Biol Biochem 33(15):2135–2144

    Article  CAS  Google Scholar 

  • Wisler GC, Norris RF (2005) Interactions between weeds and cultivated plants as related to management of plant pathogens. Weed Sci 53(6):914–917

    Article  CAS  Google Scholar 

  • Yan D, Wang Q, Mao L, Ma T, Li Y, Ouyang C, Guo M, Cao A (2015) Interaction between nitrification, denitrification, and nitrous oxide production in fumigated soils. Atmos Environ 103:82–86

    Article  CAS  Google Scholar 

  • Yan D, Cao A, Wang Q, Li Y, Canbin O, Guo M, Guo X (2019) Dimethyl disulfide (DMDS) as an effective soil fumigant against nematodes in China. Plos One 14(10):e0224456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Land CJ, Vallad GE, Boyd NS (2019) Tomato tolerance and pest control following fumigation with different ratios of dimethyl disulfide and chloropicrin. Pest Manag Sci 75:1416–1424

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Baggio JS, Boyd NS, Freeman JH, Peres NA (2020) Evaluation of ethanedinitrile (EDN) as a preplant soil fumigant in Florida strawberry production. Pest Manag Sci 76(3):1134–1141

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Freeman JH, Boyd NS (2021) Tomato tolerance and purple nutsedge control with sulfuryl fluoride mixes. Weed Technol:1–7. https://doi.org/10.1017/wet.(2021).56

  • Zasada IA, Halbrendt JM, Kokalis-Burelle N, LaMondia J, McKenry MV, Noling JW (2010) Managing nematodes without methyl bromide. Annu Rev Phytopathol 48:311–328

    Article  CAS  PubMed  Google Scholar 

  • Zavatta M, Muramoto J, Milazzo E, Koike S, Klonsky K, Goodhue R, Shennan C (2021) Integrating broccoli rotation, mustard meal, and anaerobic soil disinfestation to manage verticillium wilt in strawberry. Crop Prot 146:105659

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Juliana Baggio, Ole Becker, Nathan Boyd, Kathy Demchak, Myles Gibson, Michael Hensley, Mark Hoffman, Jason C. Hong, Elisa Lauritzen, Joji Muramoto, and Anna Testen for providing their pictures and information on specific soilborne pests and pathogen issues. A significant portion of the research conducted on anaerobic soil disinfestation in Florida, California, and Pennsylvania was funded by the USDA, ARS Southeast and Pacific Areawide Projects on Anaerobic Soil Disinfestation, by USDA, NIFA, SCRI Grant #2017-51181-26832, and by the USDA, NIFA, OREI Grant # 2021-51300-34914. F. Di Gioia’s contribution was supported by the USDA National Institute of Food and Agriculture and Hatch Appropriations under Project no. PEN04723 and Accession no. 1020664.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin Rosskopf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rosskopf, E., Di Gioia, F. (2023). New Approaches to Soil Disinfestation for Specialty Crops. In: Elmer, W.H., McGrath, M., McGovern, R.J. (eds) Handbook of Vegetable and Herb Diseases. Handbook of Plant Disease Management. Springer, Cham. https://doi.org/10.1007/978-3-030-35512-8_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35512-8_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35512-8

  • Online ISBN: 978-3-030-35512-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics