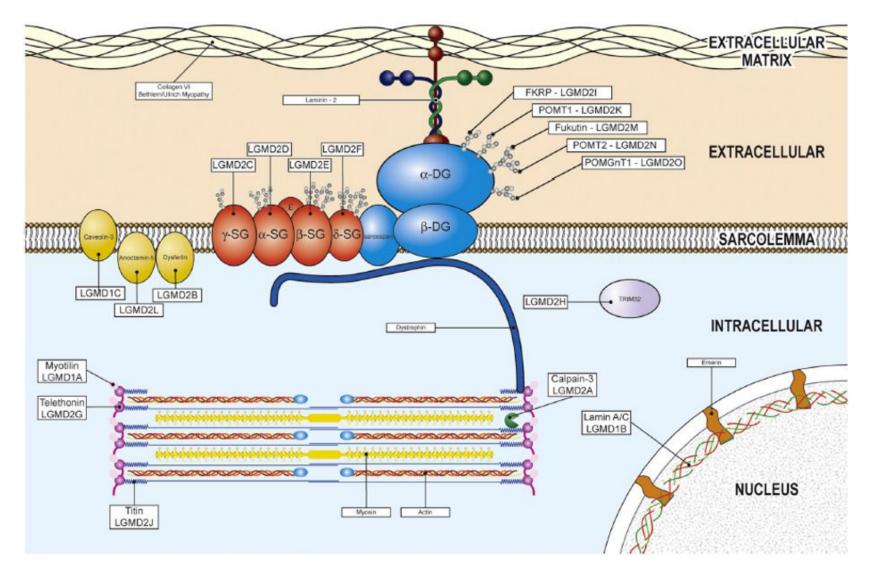


Preliminary results from MLB-01-003: an open label phase 2 study of BBP-418 in patients with Limb-girdle muscular dystrophy type 21

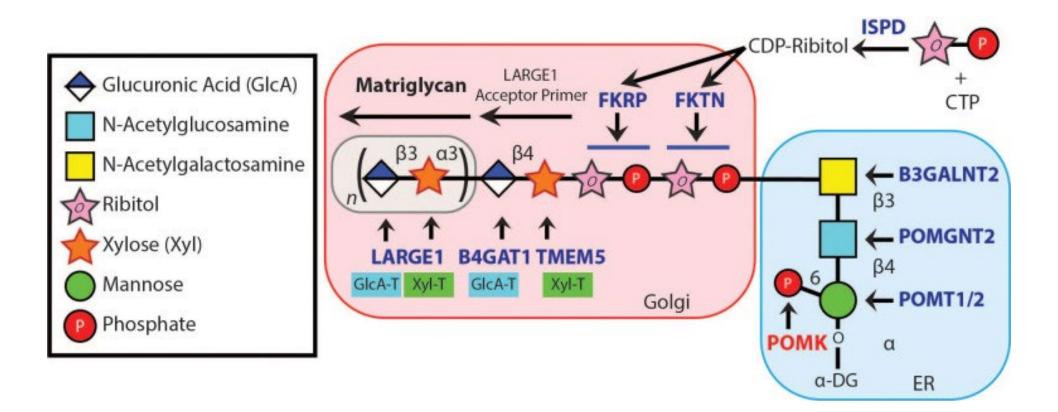
Douglas Sproule, MD – ML Bio Solutions, a Bridge Bio Company

Disclosure

• I have the following conflict of interest to declare:


WMS2022 Congress

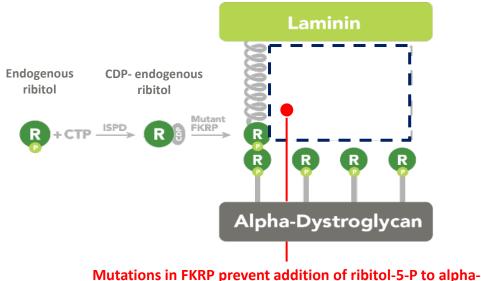
11th-15th October 2022


- I am an employee of BridgeBio Pharma / ML Bio Solutions.
- BBP-418 has not been approved to treat patients by any regulatory authority in any country.
- Phase 2 study is ongoing. Therefore, results are preliminary and may be subject to change.

Alpha Dystroglycan (αDG), disrupted in LGMD2i (LGMD R9 FKRP-related), is an integral part of the dystrophin-glycoprotein complex

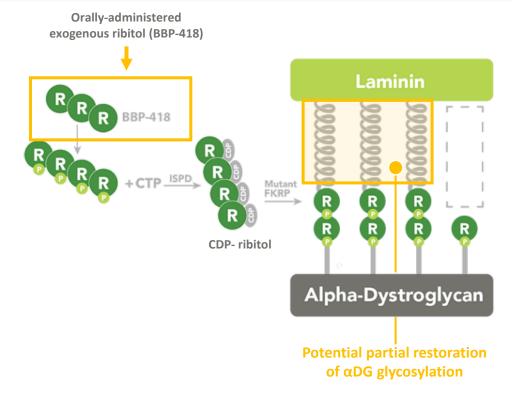
Fukutin-Related Protein (FKRP) plays a critical role in priming α DG for additional glycosylation

Oral BBP-418 is under investigation as an upstream substrate supplement to drive residual activity of mutant FKRP in LGMD2i, targeting the disease at its source


LGMD2i Disease Mechanism

Functional FKRP fully glycosylates alpha-dystroglycan (αDG) which stabilizes myocytes by binding extracellular ligands to act as a "shock absorber" for muscle fibers

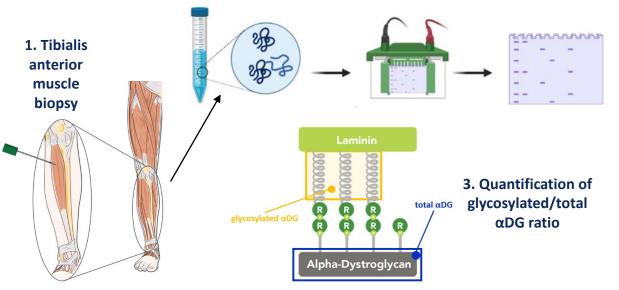
Partial loss of function mutation in FKRP results in dysfunctional, hypo-glycosylated αDG in myocytes which increases susceptibility to damage



Mutations in FKRP prevent addition of ribitol-5-P to alphadystroglycan (hypo-glycosylated αDG) limiting αDG's ability to function as a "shock absorber" for muscle fibers

BBP-418 Therapeutic Approach

Supply supraphysiological levels of ribitol upstream to drive residual activity of mutant FKRP enzyme and increase α DG glycosylation levels


LGMD2i is caused by hypo-glycosylation of α DG due to reduced FKRP enzyme activity; we have developed a novel assay to measure glycosylated & total αDG

Overview of \alphaDG assay

What is the assay?

The assay measures protein levels of glycosylated αDG and total αDG from tibialis anterior muscle biopsy samples

2. Harvest of protein from muscle biopsy & analysis by Western blot

How is the assay relevant in LGMD2i disease?

?

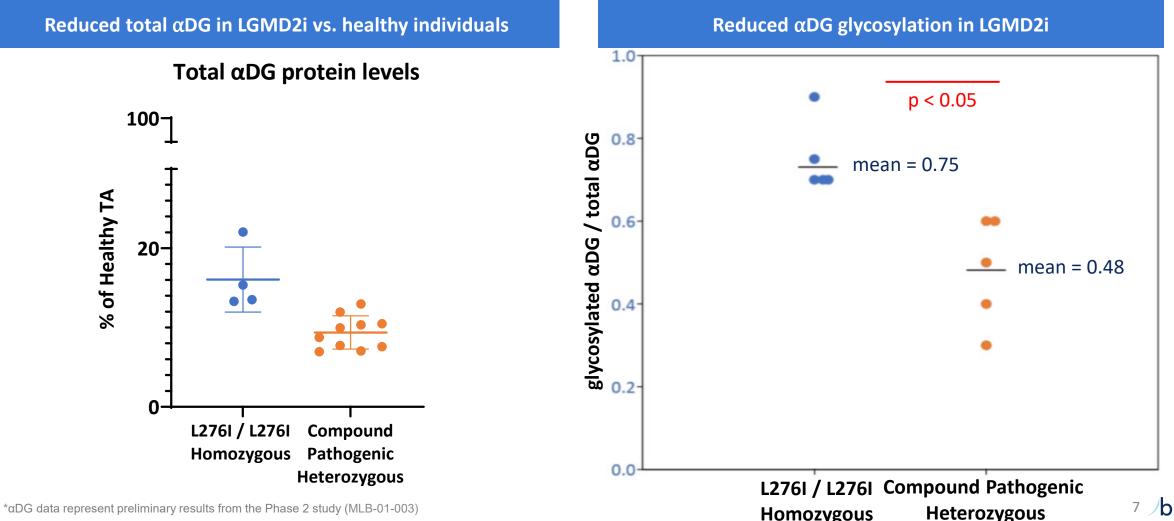
Given hypo-glycosylation of α DG is established as the root cause of LGMD2i, measurement of α DG glycosylation is a novel tool to show resolution of the disease at its source

αDG assay Proof of Concept Overview

Mouse models of LGMD2i have reduced glycosylation of α DG compared to WT animals; glycosylation follows the severity of disease in mice, mice with a more severe mutation have reduced glycosylation compared to animals with a less severe mutation

LGMD2i patients have a reduced ratio of glycosylated α DG to total α DG compared to healthy individuals

More severely affected compound pathogenic heterozygote LGMD2i patients have reduced glycosylation of α DG vs. individuals who are homozygous with the common mutation L276I / L276I


Treatment of LGMD2i patients with BBP-418 improved the ratio of glycosylated α DG / total α DG after 90 days of treatment

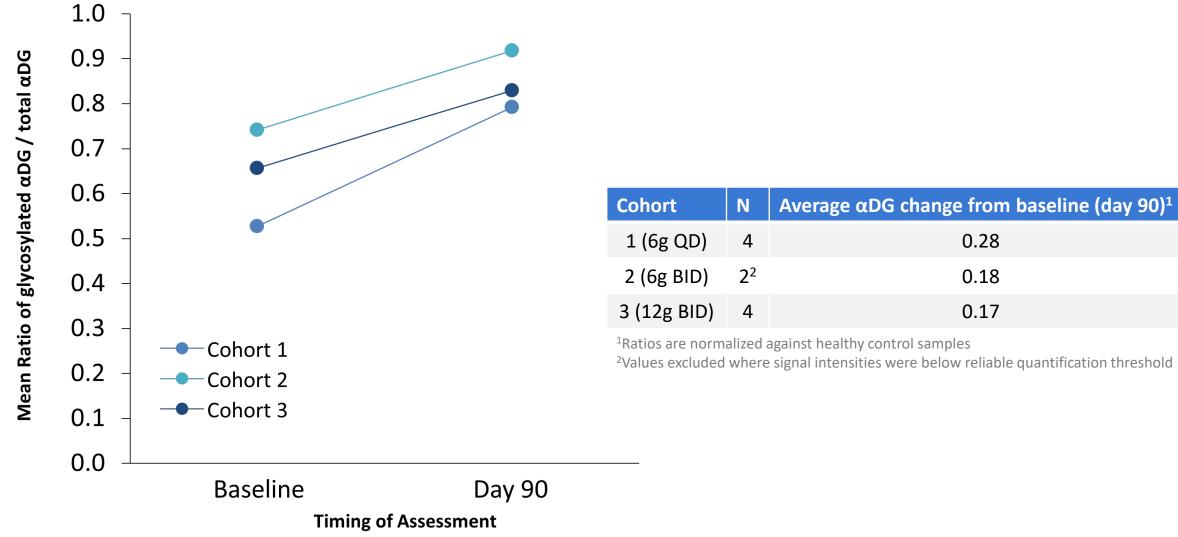
For more details on the α DG assay, please see WMS poster #171

Glycosylation of α DG mirrors the severity of LGMD2i disease

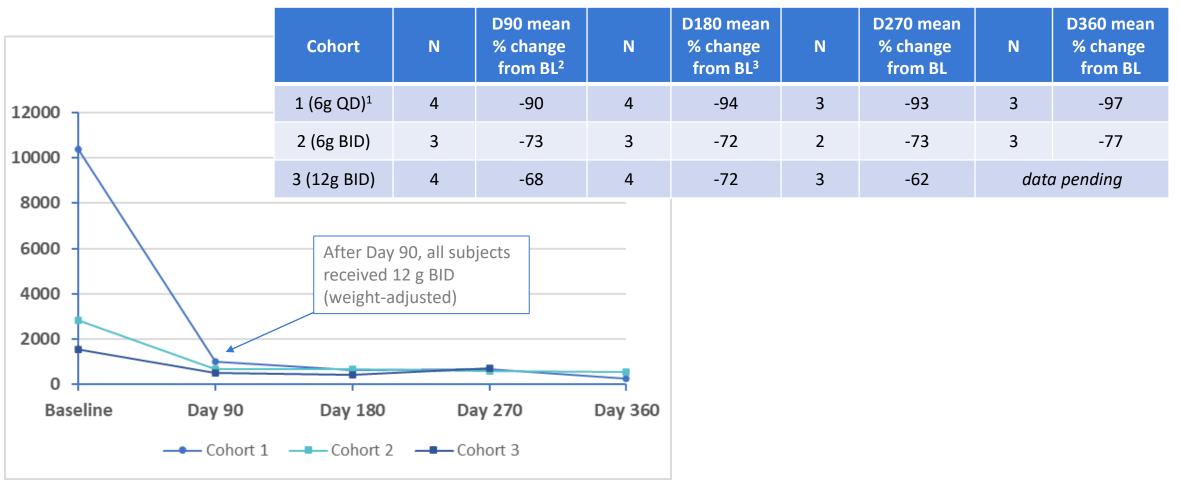
Compound pathogenic heterozygotes show reduced glycosylation compared to L276I ("common") homozygotes. Both groups are reduced compared with healthy individuals: homozygotes have 12% and compound pathogenic heterozygotes have 5% of healthy.

*αDG data represent preliminary results from the Phase 2 study (MLB-01-003)

BBP-418 is being investigated in an open label Phase 2 Study (MLB-01-003)

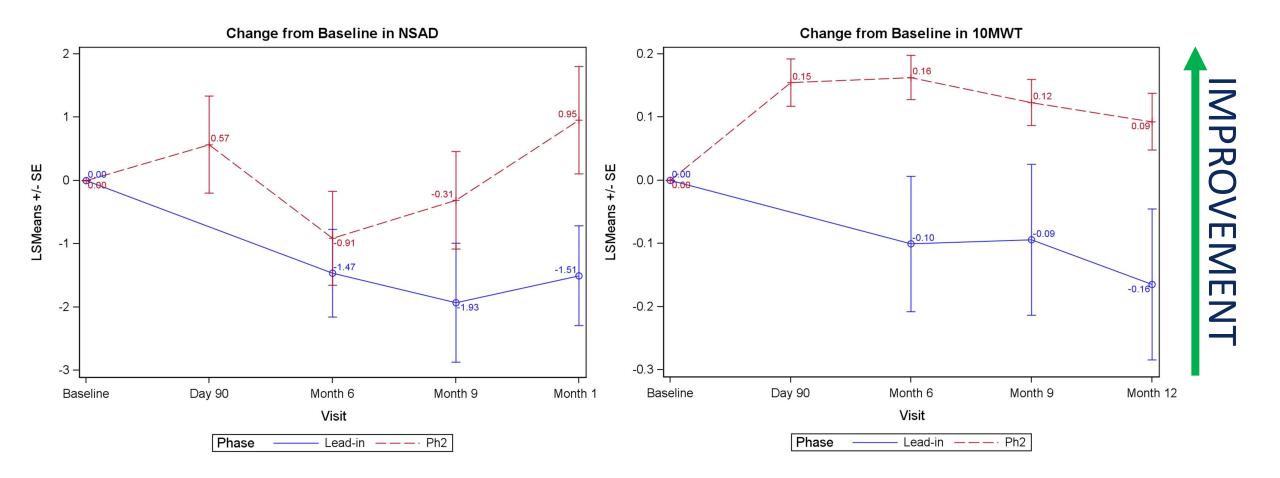

Р	art 1	Part 2	7			
Dose escalation		Maximum Dos	se Long-term extension			
90 days (N=14)		90 days (N=1	(4) 24 months			
After Part 1 all patients transition to highest dose 12g BID						
Cohort 1	6g QD n=4	12g BID n=4	Doses were adjusted for weight using the following			
Cohort 2	6g BID n=4	12g BID n=4	schema: >30-50kg 6g BID, >50-70kg 9g BID, >70kg 12g			
Cohort 3	12g BID n=6	12g BID n=6	BID			
KEY ENDPOINTS KEY INCLUSION CRITERIA						
•NSAD		•Age be	 Age between 12-55 at enrollment 			
•10-meter	cally confirmed LGMD2I					
•FVC		•Body v	•Body weight >30kg			
•PUL2.0		•Able to	 Able to complete 10MWT ≤12 seconds unaided 			
 Ratio of glycosylated αDG to total αDG (moderate disease) or unable to (severe disease Creatine Kinase 						

MLB-01-003 Subject Demographic and Baseline Characteristics


	Cohort 1 (N=4)	Cohort 2 (N=4)	Cohort 3 (N=6)	Overall (N=14)	
Age Group at Enrollment					
12 — ≤18 years	2	2	2	6	
>18 – 30 years	0	1	0	1	
>30 years	2	1	4	7	
Sex					
Male	2	1	1	4	
Female	2	3	5	10	
Genotype					
Homozygotes	3	2	3	8	
Heterozygotes	1	2	3	6	
Ambulatory Status at Baseline*					
Ambulatory	3	3	5	11	
Non-Ambulatory	1	1	1	3	
Time Since LGMD Diagnosis					
Mean (years)	2.8	6.7	9.9	7.0	

*ambulatory defined as able to complete the 10-meter walk test in \leq 12 seconds unaided

Data to date suggest that BBP-418 improves the ratio of glycosylated α DG / total α DG after 90 days of treatment



All cohorts show marked declines in creatine kinase, ~77% from baseline at day 90, ~80% at day 180, and ~76% at day 270

¹Cohort 1 Day 1 CK draws taken after functional assessments; all other draws done prior to functional assessment
 ²CK change from baseline as part 1 day 90 is statistically significant with P < 0.05
 ³First measurement since dose adjustment for all cohorts to 12g bid following D90
 Reference range for CK is 55-170 units/L for men and 30-135 units/L for women

Increases in NSAD & 10MWT velocity observed after 12 months of treatment with BBP-418

Blue lines denote natural history data collected prior to Phase 2 enrollment and red lines denote on-treatment data collected during the Phase 2 study from the same patient population

BBP-418 is well tolerated with only minor GI related adverse events recorded in the Phase 2 study

- 100 adverse events (AEs) were recorded in the study with 12 possibly or probably related to BBP-418 treatment
- 12 possibly/probably related AEs include: diarrhea, dehydration, nausea, vomiting, dyspepsia, gastroenteritis, and headaches
- No discontinuations or interruptions in therapy
- 1 severe adverse event recorded unrelated to the treatment

TEAE	# of incidents	Severity	
Diarrhea	4	75% Grade 1	
Dehydration	1	100% Grade 1	
Nausea	2	100% Grade 1	
Vomiting	2	100% Grade 1	
Dyspepsia	1	100% Grade 1	
Gastroenteritis	1	100% Grade 2	
Headaches	1	100% Grade 2	
Overall	12	83% Grade 1	

BBP-418 was well-tolerated and α DG glycosylation, creatine kinase, NSAD, and 10MWT velocity improvements were observed in Phase 2 study

- Impaired glycosylation of αDG directly leads to the development of muscular dystrophy in LGMD2i patients
- Novel assay developed to measure glycosylated and total α DG; Increased glycosylation of α DG was observed in all cohorts, with an average increase in α DG ratio of +0.21 at day 90
- A large, sustained reduction in creatine kinase (>70%) was seen over an extended (up to 12-month) treatment period
- Improvements in NSAD & 10MWT velocity were observed over a 12-month treatment period
- No treatment-related SAEs or dose limiting toxicities were observed with BBP-418
- Plans for a Phase 3 study of BBP-418 in LGMD2i are in development

Thank You!

- Amy Harper, Ruby Langeslay & the team at VCU
- Patients, families and study participants

