
mod_wasm
Bringing WebAssembly to Apache

Daniel López Ridruejo / Jesús González Martí

October 3rd, 2022

Office of the CTO | Wasm Labs @ VMware

https://wasmlabs.dev

https://wasmlabs.dev/

2

About the Speakers

Daniel Lopez

Jesús González

• Sr. Director @ Wasm Labs (VMware)

• Bitnami CEO & Co-Founder (acquired by VMware)

• Apache Software Foundation - Emeritus Member

Wasm Labs | Office of the CTO | VMware

• Engineer @ Wasm Labs (VMware)

• Co-Founder & CTO at Smart Home startup

• AI/ML & NLP at Intel

3

Agenda
• What’s WebAssembly?

• Introducing mod_wasm

• mod_wasm in action!

• Roadmap

• Q&A

4

What’s WebAssembly? !

5

What is WebAssembly (aka Wasm)

WebAssembly is an open standard that defines a
portable binary format for executable programs.

WebAssembly is native-supported in all major browsers

Neither web, nor assembly!

6

WebAssembly in the Browser

Chrome

V8

Wasm
Runtime

HTML CSS

Wasm binary

Wasm-bindgen

Compiler

Source code à Wasm

Compiler

Interpreter à Wasm

7

What you can do with WebAssembly in the browser...

8

WordPress entirely in the Browser

https://wordpress.wasmlabs.dev/

• PHP interpreted ported to Wasm (including SQLite)
• Very useful for tutorials and instructions manuals

First work at WasmLabs

https://wordpress.wasmlabs.dev/

9

WebAssembly in the Server

“If WASM+WASI existed in 2008, we wouldn't have
needed to created Docker. That's how important it is.
Webassembly on the server is the future of computing.”

Solomon Hykes, creator of Docker

An historic tweet from March 2019

10

WebAssembly in the Server

Operating System

Filesystem Network Database

Wasm Runtime

WASI, WASI-NN, Proxy-Wasm
Wasm binary

Compiler

Source code à Wasm

Compiler

Interpreter à Wasm

Wasm+WASI

11

WebAssembly Top Features

! Open
Adopted by the entire industry

" Fast
Native-like speed, JIT/AOT, no cold-starts

Secure
Memory safe, sandboxed, capabilities-based model,
better supply chain security

$ Portable
Most CPUs (x86, ARM, RISC-V) , most OS including
Android, ESXi, non-Posix

% Efficient
Minimal memory footprint, CPU requirements

& Polyglot
Support for 40+ languages, modern toolchains

In many respects, WebAssembly aims to fulfill Java’s original promise, but with the hindsight of
20+ years and unanimous industry backing.

12

Introducing mod_wasm "

13

Architecture Overview
mod_wasm.so + libwasm_runtime.so + Wasmtime

Apache HTTP Server

(httpd)

mod_wasm.so

mod_wasm.so
• Apache extension module.

• New directives for httpd.conf to configure the Wasm context.

• Implements post_config() and content_handler() hooks.

libwasm_runtime.so
• Very high-level library for managing Wasm modules.

• It offers a C-API to mod_wasm.so.

Wasmtime

• WebAssembly runtime from the Bytecode Alliance.

libwasm_runtime.so

Wasmtime

Project

mod_wasm

dlopen()

dynamic link

crate dependency

14

mod_wasm in action! #

15

Demo #1: PHP running as Wasm in the Server

• Note System is wasi on wasm32.

• Environment variables

http://192.168.64.2:8080/phpinfo.php

16

Demo #2: PrettyFy WebApp
CGI Vs. WebAssembly

1) CGI

• The prettyfy.py script is served as CGI.

• Python interpreter installed in the OS.

2) WebAssembly

• It will use the same unmodified Python script.

• The Python interpreter will be compiled to Wasm
and executed within a Wasm engine.

“PrettyFy” is a one-script, Python-based WebApp:

• Reads contents from a previously uploaded file

• Outputs a full color prettified code in HTML

*In both scenarios, HTTP request headers and URL parameters will be passed as environment variables.

Two running environments:

17

Demo #2: PrettyFy WebApp
CGI

• Apache, CGI and Python are working as expected.

• Note Python’s sys.platform value is linux.

• What if we try a Path Traversal attack? !

http://192.168.64.2:8080/cgi-bin/prettyfy.py?file=search_word_count.py

18

Demo #2: PrettyFy WebApp
CGI + Path Traversal Attack

• A simple Path Traversal attack was successful "

• PrettyFy didn’t meet OWASP guidelines #

CONCLUSION:

Do not trust 3rd party software!!

http://192.168.64.2:8080/cgi-bin/prettyfy.py?file=../../conf/httpd.conf

19

Demo #2: PrettyFy WebApp
OWASP 2021 - Top 10

#1 – Broken Access Control https://owasp.org/Top10

• Least privilege (deny by default)
• Bypassing access control checks by modifying URL or API requests
• Accessing API with missing access control
• Elevation of privilege
• ...

20

Demo #2: PrettyFy WebApp
Wasm

http://192.168.64.2:8080/wasm-module?file=search_word_count.py

• Executing the script within the Wasm environment.

• Running the same unmodified script:

• Note sys.platform now indicates wasi.

21

Demo #2: PrettyFy WebApp
Wasm + Path Traversal Attack

http://192.168.64.2:8080/wasm-module?file= =../../conf/httpd.conf

• Path Traversal attack didn’t work! $

• The Wasm Capabilities Model prevented the
code to get out from its sandboxed context.

CONCLUSION:

mod_wasm allows running untrusted code in a
secure environment in Apache (without containers!)

22

Demo #2: PrettyFy WebApp
What just happened?

ü We already knew that CGI is not secure enough, especially to run untrusted code.

ü Executing the entire Python interpreter in WebAssembly provided a secure
environment to run:

• Untrusted code.

• Unmodified applications.

• And with no heavy image containers needed!

ü The Wasm capabilities model can limit the access to the resources:

• No capabilities enabled by default.

• Execution is allowed/denied at syscall level.

• Capabilities can be updated per request.

“A happy and smiling startup CTO, digital art, cartoon style”

by DALL·E

23

Behind the Scenes $

24

Directives
Setting up httpd.conf for PrettyFy demo

Apache’s mod_wasm new directives:

• WasmRoot

• WasmModule

• WasmDir

• WasmMapDir

• WasmArg

• WasmEnv

• WasmEnableCGI

25

PrettyFy Source Code
prettyfy.py

Interpreter directive

Python imports

HTTP “Content-Type” header

HTML Opening Markups

CGI Management

Getting URL Parameters

HTML Closing Markups

Dangerous code!

26

Clear stdout
buffer

on ap_hook_post_config()

Capture stdout buffer

Loading

Wasm
Module

on each WasmXXX directive at httpd.conf

Workflow
Wasm initialization and request execution

Apache HTTP Server

(httpd) mod_wasm.so libwasm_runtime.so Wasmtime

Apache

Boot Up

wasm_config_set_xxx()

wasm_runtime_init_module()
Module::from_file()

on ap_hook_handler()
wasm_runtime_run_module()

Per

Request

Build WASI context from Request

Instantiate Wasm Module

Execute

Executing

Wasm
ModuleReturn stdoutap_rprintf(r, %s”, module_response)

27

Roadmap %

28

Roadmap

• Today:

• mod_wasm is already available in GitHub!

https://github.com/vmware-labs/mod-wasm

• Short-term:

• Interact with the community for adoption and new features

• Contribute Upstream

• Mid-term:

• Implement performance improvements

• Support for more than one Wasm module and entry points

• WebAssembly Multi-engine support

https://github.com/vmware-labs/mod-wasm

29

Thanks! &
https://github.com/vmware-labs/mod_wasm

@vmwwasm

https://wasmlabs.dev

