Skip to main content
Log in

Dynamic monitoring and data analysis of a long-span arch bridge based on high-rate GNSS-RTK measurement combining CF-CEEMD method

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

The purpose of this article is to develop a combined data analysis method of Chebyshev filter (CF) and complementary ensemble empirical mode decomposition (CEEMD) for weakening the influence of the background noise of global navigation satellite system (GNSS) sensors. To test the effect of noise reduction using the proposed CF-CEEMD method, a nonlinear signal with additive noise is first introduced. Then, the GNSS measured signal of a long-span arch bridge is analyzed using CF-CEEMD. Moreover, the dynamic characteristic parameters (i.e. natural frequencies, mode shapes and damping ratios) of the bridge are extracted from the de-noised signal employing the data-driven stochastic subspace identification (DD-SSI) algorithm. Meanwhile, the finite element (FE) model of the bridge is established to predict the natural frequencies and the mode shapes via modal analysis. Finally, the results depict that GNSS-RTK technique is applicable to monitor the dynamic response of long-span bridges with reasonable accuracy via CF-CEEMD analysis. Furthermore, the natural frequencies and mode shapes derived experimentally via DD-SSI analysis have good agreement with the predicted values based on FE model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Piombo BAD, Fasana A, Marchesiello S, Ruzzene M (2000) Modelling and identification of the dynamic response of a supported bridge. Mech Syst Signal Process 14(1):75–89

    Article  Google Scholar 

  2. Jia JQ, Feng S, Liu W (2015) A triaxial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring. Meas Sci Technol 26(6):065104

    Article  Google Scholar 

  3. Masri SF, Sheng LH, Caffrey JP, Nigbor RL, Wahbeh M, Abdel-Ghaffar AM (2004) Application of a web-enabled real-time structural health monitoring system for civil infrastructure systems. Smart Mater Struct 13(6):1269–1283

    Article  Google Scholar 

  4. Moschas F, Stiros S (2011) Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer. Eng Struct 33(1):10–17

    Article  Google Scholar 

  5. Yi TH, Li HN, Song GB, Guo Q (2016) Detection of shifts in GPS measurements for a long-span bridge using CUSUM chart. Int J Struct Stab Dyn 16(4):1640024

    Article  Google Scholar 

  6. De Oliveira JVM, Larocca APC, De Araújo Neto JO, Cunha AL, Dos Santos MC, Schaal RE (2019) Vibration monitoring of a small concrete bridge using wavelet transforms on GPS data. J Civ Struct Health Monit 9(3):397–409

    Article  Google Scholar 

  7. Chen Q, Jiang W, Meng X, Jiang P, Wang K, Xie Y, Ye J (2018) Vertical deformation monitoring of the suspension bridge tower using GNSS: a case study of the Forth Road Bridge in the UK. Remote Sens 10:364

    Article  Google Scholar 

  8. Vazquez BGE, Gaxiola-Camacho JR, Bennett R, Guzman-Acevedo GM, Gaxiola-Camacho IE (2017) Structural evaluation of dynamic and semi-static displacements of the Juarez Bridge using GPS technology. Measurement 110:146–153

    Article  Google Scholar 

  9. Li X, Zhang X, Ren X, Fritsche M, Wickert J, Schuh H (2015) Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou. Sci Rep 5:8328–8341

    Article  Google Scholar 

  10. Ince CD, Sahin M (2000) Real-time deformation monitoring with GPS and Kalman Filter. Earth Planets Space 52(10):837–840

    Article  Google Scholar 

  11. Yi TH, Li HN, Gu M (2010) Full-scale measurements of dynamic response of suspension bridge subjected to environmental loads using GPS technology. Sci China Technol Sci 53(2):469–479

    Article  Google Scholar 

  12. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A Math Phys Eng Sci 454(1971):903–995. https://doi.org/10.1098/rspa.1998.0193

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen YK, Ma JT (2014) Random noise attenuation by f-x empirical-mode decomposition predictive filtering. Geophysics 79(3):V81–V91

    Article  Google Scholar 

  14. Han JJ, Van der Baan M (2013) Empirical mode decomposition for seismic time-frequency analysis. Geophysics 78(2):O9–O19

    Article  Google Scholar 

  15. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1–41

    Article  Google Scholar 

  16. Yeh JR, Shieh JS, Huang NE (2010) Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv Adapt Data Anal 2:135–156

    Article  MathSciNet  Google Scholar 

  17. Wang JJ, He XF, Ferreira VG (2015) Ocean wave separation using CEEMD-Wavelet in GPS wave measurement. Sensors 15(8):19416–19428

    Article  Google Scholar 

  18. Li J, Liu C, Zeng ZF, Chen LN (2015) GPR signal denoising and target extraction with the CEEMD method. IEEE Geosci Remote Sens Lett 12(8):1615–1619

    Article  Google Scholar 

  19. Vrochidou E, Alvanitopoulos P, Andreadis I, Elenas A (2018) Artificial accelerograms composition based on the CEEMD. Trans Inst Meas Control 40(1):239–250

    Article  Google Scholar 

  20. Brownjohn JMW, Magalhaes F, Cunha A (2010) Ambient vibration re-testing and operational modal analysis of the Humber Bridge. Eng Struct 32(8):2003–2018

    Article  Google Scholar 

  21. Siringoringo DM, Fujino Y (2008) System identification of suspension bridge from ambient vibration response. Eng Struct 30(2):462–477

    Article  Google Scholar 

  22. Ku CJ, Cermak JE, Chou LS (2007) Random decrement-based method for modal parameter identification of a dynamic system using acceleration responses. J Wind Eng Ind Aerodyn 95:389–410

    Article  Google Scholar 

  23. Ibrahim SR, Pappa RS (1982) Large modal survey testing using the Ibrahim time domain identification technique. J Spacecr Rockets 19(5):459–465

    Article  Google Scholar 

  24. Pi YL (1989) Modal identification of vibrating structures using ARMA model. J Eng Mech 115(10):2232–2250

    Article  Google Scholar 

  25. Juang JN, Pappa RS (1985) An eigensystem realization algorithm for modal parameter identification and model reduction. J Guid Control Dyn 8(5):620–627

    Article  Google Scholar 

  26. Juang JN, Pappa RS (1986) Effects of noise on modal parameters identified by the eigensystem realization algorithm. J Guid Control Dyn 9(3):294–303

    Article  Google Scholar 

  27. Peeters B, Roeck GD (1999) Reference-based stochastic subspace identification for output-only modal analysis. Mech Syst Signal Process 13:855–878

    Article  Google Scholar 

  28. Priori C, De-Angelis M, Betti R (2018) On the selection of user-defined parameters in data-driven stochastic subspace identification. Mech Syst Signal Process 100:501–523

    Article  Google Scholar 

  29. Tharach J, Virote B (2011) Determination of flutter derivatives of bridge decks by covariance-driven stochastic subspace identification. Int J Struct Stab Dyn 11(1):73–99

    Article  MathSciNet  Google Scholar 

  30. Peeters B, Roeck GD (2001) Stochastic system identification for operational modal analysis: a review. J Dyn Syst Meas Control 123:659–666

    Article  Google Scholar 

  31. Kim J, Lynch J (2012) Subspace system identification of support-excited structures-part I: theory and black-box system identification. Earthq Eng Struct Dyn 41(15):2235–2251

    Google Scholar 

  32. Ubertini F, Gentile C, Materazzi A (2013) Automated modal identification in operational conditions and its application to bridges. Eng Struct 46:264–278

    Article  Google Scholar 

  33. Li WC, Vu VH, Liu ZH, Thomas M, Hazel B (2018) Extraction of modal parameters for identification of time-varying systems using data-driven stochastic subspace identification. J Vib Control 24(20):4781–4796

    Article  MathSciNet  Google Scholar 

  34. Xiong CB, Niu YB, Wang ZL, Yuan LL (2019) Dynamic monitoring of a super high-rise structure based on GNSS-RTK technique combining CEEMDAN and wavelet threshold analysis. Eur J Environ Civ Eng. https://doi.org/10.1080/19648189.2019.1608471

    Article  Google Scholar 

  35. Andreas B (2017) Reliable GPS + BDS RTK positioning with partial ambiguity resolution. GPS Solut 21(3):1083–1092

    Article  Google Scholar 

  36. Paziewski J, Sieradzki R (2017) Integrated GPS + BDS instantaneous medium baseline RTK positioning: signal analysis, methodology and performance assessment. Adv Space Res 60(12):2561–2573

    Article  Google Scholar 

  37. Doong SH (2009) A closed-form formula for GPS GDOP computation. GPS Solut 13(3):183–190

    Article  Google Scholar 

  38. Yi JH, Yun CB (2004) Comparative study on modal identification methods using output-only information. Struct Eng Mech 17(3):445–466

    Article  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (U1709216) and the National Key R&D Program of China (2018YFE0125400), which made the research work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangpeng Shu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Ye, Y., Zhao, W. et al. Dynamic monitoring and data analysis of a long-span arch bridge based on high-rate GNSS-RTK measurement combining CF-CEEMD method. J Civil Struct Health Monit 11, 35–48 (2021). https://doi.org/10.1007/s13349-020-00436-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-020-00436-x

Keywords

Navigation