Skip to main content
Log in

A simple PZT transducer design for electromechanical impedance (EMI)-based multi-sensing interrogation

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

A simple sensor design to achieve different electromechanical impedance (EMI) characteristics is required for the serial/parallel multi-sensing interrogation. Aiming at the shortcomings of traditional trial-and-error method for collocating serial/parallel PZT transducer with different EMI characteristics, this paper proposes a simple but effective method to design and fabricate PZT transducers with distinguished EMI characteristics by bonding PZT patch on permanent magnet disks with different thickness. The thickness of the magnetic disk could change the impedance resonant frequency of the transducer almost linearly, which greatly simplifies the transducer design to ensure each one has distinguished peak frequency. The EMI responses of proposed smart modulation transducer (SMT) under different thickness of magnetic disk were obtained by finite element method (FEM) simulations, as well as by experiments. The simulation outcomes are in good agreement with experimental results. And it is concluded that the EMI resonant peak frequency of SMT increases linearly due to the increase of magnet thickness, which ensures each SMT has very different EMI characteristics. Both experiments and simulations have confirmed that the proposed method is effective. To obtain the insight of the performance of the SMT to structural damage detection using multi-sensing EMI method, the four fabricated SMTs with different thickness of magnetic disk were series-connected for multi-bolt loosening monitoring. Results validate that the response signatures with distinguished EMI characteristics can be obtained, and both the severity and location of bolt looseness can be identified via the modified MAPD (mean absolute percentage deviation) damage index. The proposed PZT design method has great guiding role for optimizing the design of sensors for EMI-based multi-sensing interrogation, promoting the practical application of EMI technology in metal structure health monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Peng J, Xiao L, Zhang J, Cai CS, Wang L (2019) Flexural behavior of corroded HPS beams. Eng Struct 195:274–287. https://doi.org/10.1016/j.engstruct.2019.06.006

    Article  Google Scholar 

  2. Huo L, Li C, Jiang T, Li HN (2018) Feasibility study of steel bar corrosion monitoring using a piezoceramic transducer enabled time reversal method. Appl Sci 8(11):2304. https://doi.org/10.3390/app8112304

    Article  Google Scholar 

  3. Peng J, Hu S, Zhang J, Cai CS, Li LY (2019) Influence of cracks on chloride diffusivity in concrete: a five-phase mesoscale model approach. Constr Build Mater 197:587–596. https://doi.org/10.1016/j.conbuildmat.2018.11.208

    Article  Google Scholar 

  4. Li N, Wang F, Song G (2020) New entropy-based vibro-acoustic modulation method for metal fatigue crack detection: an exploratory study. Measurement 150:107075. https://doi.org/10.1016/j.measurement.2019.107075

    Article  Google Scholar 

  5. Sawicki B, Brühwiler E (2020) Long-term strain measurements of traffic and temperature effects on an RC bridge deck slab strengthened with an R-UHPFRC layer. J Civil Struct Health Monit 10(2):333–344. https://doi.org/10.1007/s13349-020-00387-3

    Article  Google Scholar 

  6. Zhu J, Ho SCM, Kong Q, Patil D, Mo YL, Song G (2017) Estimation of impact location on concrete column. Smart Mater Struct 26(5):055037. https://doi.org/10.1088/1361-665X/aa6768

    Article  Google Scholar 

  7. Ji Q, Ho M, Zheng R, Ding Z, Song G (2015) An exploratory study of stress wave communication in concrete structures. Smart Struct Syst 15(1):135–150. https://doi.org/10.12989/sss.2015.15.1.135

    Article  Google Scholar 

  8. Siu S, Ji Q, Wu W, Song G, Ding Z (2014) Stress wave communication in concrete: I. Characterization of a smart aggregate based concrete channel. Smart Mat Struct 23(12):125030. https://doi.org/10.1088/0964-1726/23/12/125030

    Article  Google Scholar 

  9. Kong Q, Robert RH, Silva P, Mo YL (2016) Cyclic crack monitoring of a reinforced concrete column under simulated pseudo-dynamic loading using piezoceramic-based smart aggregates. Appl Sci 6(11):341. https://doi.org/10.3390/app6110341

    Article  Google Scholar 

  10. Lu G, Wang T, Zhou M, Li Y (2019) Characterization of ultrasonic energy diffusion in a steel alloy sample with tensile force using PZT transducers. Sensors 19(9):2185. https://doi.org/10.3390/s19092185

    Article  Google Scholar 

  11. Wang G (2013) Analysis of bimorph piezoelectric beam energy harvesters using Timoshenko and Euler–Bernoulli beam theory. J Intell Mater Syst Struct 24(2):226–239. https://doi.org/10.1177/1045389X12461080

    Article  Google Scholar 

  12. Ewere F, Wang G (2014) Performance of galloping piezoelectric energy harvesters. J Intell Mater Syst Struct 25(14):1693–1704. https://doi.org/10.1177/1045389X13505251

    Article  Google Scholar 

  13. Ma Y, Ji Q, Chen S, Song G (2017) An experimental study of ultra-low power wireless sensor-based autonomous energy harvesting system. J Renew Sustain Energy 9(5):054702. https://doi.org/10.1063/1.4997274

    Article  Google Scholar 

  14. Huo L, Chen D, Kong Q, Li H, Song G (2017) Smart washer—a piezoceramic-based transducer to monitor looseness of bolted connection. Smart Mater Struct 26(2):025033. https://doi.org/10.1088/1361-665X/26/2/025033

    Article  Google Scholar 

  15. Jiang T, Wu Q, Wang L, Huo L, Song G (2018) Monitoring of bolt looseness-induced damage in steel truss arch structure using piezoceramic transducers. IEEE Sens J 18(16):6677–6685. https://doi.org/10.1109/JSEN.2018.2847308

    Article  Google Scholar 

  16. Hei C, Luo M, Gong P, Song G (2020) Quantitative evaluation of bolt connection using a single piezoceramic transducer and ultrasonic coda wave energy with the consideration of the piezoceramic aging effect. Smart Mater Struct 29(2):027001. https://doi.org/10.1088/1361-665X/ab6076

    Article  Google Scholar 

  17. Chen B, Hei C, Luo M, Ho MSC, Song G (2018) Pipeline two-dimensional impact location determination using time of arrival with instant phase (TOAIP) with piezoceramic transducer array. Smart Mater Struct 27(10):105003. https://doi.org/10.1088/1361-665X/aadaa9

    Article  Google Scholar 

  18. Raju J, Bhalla S, Visalakshi T (2020) Pipeline corrosion assessment using piezo-sensors in reusable non-bonded configuration. NDT E Int 111:102220. https://doi.org/10.1016/j.ndteint.2020.102220

    Article  Google Scholar 

  19. Li W, Kong Q, Ho SCM, Lim I, Mo YL, Song G (2016) Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures. Smart Mater Struct 25(11):115031. https://doi.org/10.1088/0964-1726/25/11/115031

    Article  Google Scholar 

  20. Zou D, Du C, Liu T, Li W (2019) Effects of temperature on the performance of the piezoelectric-based smart aggregates active monitoring method for concrete structures. Smart Mater Struct 28(3):035016. https://doi.org/10.1088/1361-665X/aafe15

    Article  Google Scholar 

  21. Xu K, Ren C, Deng Q, Jin Q, Chen X (2018) Real-time monitoring of bond slip between GFRP bar and concrete structure using piezoceramic transducer-enabled active sensing. Sensors 18(8):2653. https://doi.org/10.3390/s18082653

    Article  Google Scholar 

  22. Li X, Luo M, Hei C, Song G (2019) Quantitative evaluation of debond in concrete-filled steel tubular member (CFSTM) using piezoceramic transducers and ultrasonic head wave amplitude. Smart Mater Struct 28(7):075033. https://doi.org/10.1088/1361-665X/ab1f27

    Article  Google Scholar 

  23. Wang T, Song G, Wang Z, Li Y (2013) Proof-of-concept study of monitoring bolt connection status using a piezoelectric based active sensing method. Smart Mater Struct 22(8):087001. https://doi.org/10.1088/0964-1726/22/8/087001

    Article  Google Scholar 

  24. Liang C, Sun FP, Rogers CA (1997) Coupled electromechanical analysis of adaptive material system—determination of actuator power consumption and system energy transfer. J Intell Mater Syst Struct 8(4):335–343. https://doi.org/10.1177/1045389X9700800406

    Article  Google Scholar 

  25. Wang F, Ho SCM, Huo L, Song G (2018) A novel fractal contact-electromechanical impedance model for quantitative monitoring of bolted joint looseness. IEEE Access 6:40212–40220. https://doi.org/10.1109/ACCESS.2018.2855693

    Article  Google Scholar 

  26. Wang T, Liu S, Shao J, Li Y (2016) Health monitoring of bolted joints using the time reversal method and piezoelectric transducers. Smart Mater Struct 25(2):025010. https://doi.org/10.1088/0964-1726/25/2/025010

    Article  Google Scholar 

  27. Wang F, Song G (2019) Bolt early looseness monitoring using modified vibro-acoustic modulation by time-reversal. Mech Syst Signal Process 130:349–360. https://doi.org/10.1016/j.ymssp.2019.04.036

    Article  Google Scholar 

  28. Wang F, Chen Z, Song G (2020) Monitoring of multi-bolt connection looseness using entropy-based active sensing and genetic algorithm-based least square support vector machine. Mech Syst Signal Process 136:106507. https://doi.org/10.1016/j.ymssp.2019.106507

    Article  Google Scholar 

  29. Park G, Cudney HH, Inman DJ (2000) Impedance-based health monitoring of civil structural components. J Infrastruct Syst 6(4):153–160. https://doi.org/10.1061/(ASCE)1076-0342(2000)6:4(153)

    Article  Google Scholar 

  30. Providakis CP, Liarakos EV, Kampianakis E (2013) Nondestructive wireless monitoring of early-age concrete strength gain using an innovative electromechanical impedance sensing system. Smart Mat Res 2013:932568. https://doi.org/10.1155/2013/932568

    Article  Google Scholar 

  31. Park G, Cudney HH, Inman DJ (2001) Feasibility of using impedance-based damage assessment for pipeline structures. Earthquake Eng Struct Dynam 30(10):1463–1474. https://doi.org/10.1002/eqe.72

    Article  Google Scholar 

  32. Huo L, Chen D, Liang Y, Li H, Feng X, Song G (2017) Impedance based bolt pre-load monitoring using piezoceramic smart washer. Smart Mater Struct 26(5):057004. https://doi.org/10.1088/1361-665X/aa6a8e

    Article  Google Scholar 

  33. Shao J, Wang T, Yin H, Yang D, Li Y (2016) Bolt looseness detection based on piezoelectric impedance frequency shift. Appl Sci 6(10):298. https://doi.org/10.3390/app6100298

    Article  Google Scholar 

  34. Xu J, Dong J, Li H, Zhang C, Ho SC (2019) Looseness monitoring of bolted spherical joint connection using electro-mechanical impedance technique and BP neural networks. Sensors 19(8):1906. https://doi.org/10.3390/s19081906

    Article  Google Scholar 

  35. Giurgiutiu V, Reynolds A, Rogers CA (1999) Experimental investigation of E/M impedance health monitoring for spot-welded structural joints. J Intell Mater Syst Struct 10(10):802–812. https://doi.org/10.1106/N0J5-6UJ2-WlGV-Q8MC

    Article  Google Scholar 

  36. Zhang J, Zhang C, Xiao J, Jiang J (2019) A PZT-based electromechanical impedance method for monitoring the soil freeze–thaw process. Sensors 19(5):1107. https://doi.org/10.3390/s19051107

    Article  Google Scholar 

  37. Wu J, Li W, Feng Q (2018) Electro-mechanical impedance (EMI) based interlayer slide detection using piezoceramic smart aggregates—a feasibility study. Sensors 18(10):3524. https://doi.org/10.3390/s18103524

    Article  Google Scholar 

  38. Shi Y, Luo M, Li W, Song G (2018) Grout compactness monitoring of concrete-filled fiber-reinforced polymer tube using electromechanical impedance. Smart Mater Struct 27(5):055008. https://doi.org/10.1088/1361-665X/aabaaf

    Article  Google Scholar 

  39. Li W, Liu T, Zou D, Wang J, Yi TH (2019) PZT based smart corrosion coupon using electromechanical impedance. Mech Syst Signal Process 129:455–469. https://doi.org/10.1016/j.ymssp.2019.04.049

    Article  Google Scholar 

  40. Zagrai AN, Giurgiutiu V (2001) Electro-mechanical impedance method for crack detection in thin plates. J Intell Mater Syst Struct 12(10):709–718. https://doi.org/10.1177/104538901320560355

    Article  Google Scholar 

  41. Lim YY, Soh CK (2014) Electro-mechanical impedance (EMI)-based incipient crack monitoring and critical crack identification of beam structures. Res Nondestr Eval 25(2):82–98. https://doi.org/10.1080/09349847.2013.848311

    Article  Google Scholar 

  42. Zuo C, Feng X, Zhang Y, Lu L, Zhou J (2017) Crack detection in pipelines using multiple electromechanical impedance sensors. Smart Mater Struct 26(10):104004. https://doi.org/10.1088/1361-665X/aa7ef3

    Article  Google Scholar 

  43. Xu YG, Liu GR (2002) A modified electro-mechanical impedance model of piezoelectric actuator-sensors for debonding detection of composite patches. J Intell Mater Syst Struct 13(6):389–396. https://doi.org/10.1177/104538902761696733

    Article  Google Scholar 

  44. Giurgiutiu V, Harries K, Petrou M, Bost J, Quattlebaum JB (2003) Disbond detection with piezoelectric wafer active sensors in RC structures strengthened with FRP composite overlays. Earthq Eng Vib 2(2):213–223. https://doi.org/10.1007/s11803-003-0005-9

    Article  Google Scholar 

  45. Li W, Fan S, Ho SCM, Wu J, Song G (2018) Interfacial debonding detection in fiber-reinforced polymer rebar–reinforced concrete using electro-mechanical impedance technique. Struct Health Monit 17(3):461–471. https://doi.org/10.1177/1475921717703053

    Article  Google Scholar 

  46. Wang T, Wei D, Shao J, Li Y, Song G (2018) Structural stress monitoring based on piezoelectric impedance frequency shift. J Aerospace Eng 31(6):04018092. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000900

    Article  Google Scholar 

  47. Kocherla A, Subramaniam KV (2020) Embedded electrical impedance-based PZT sensor for monitoring hydrating concrete: development and evaluation. Smart Mater Struct 29(5):055038. https://doi.org/10.1088/1361-665X/ab6955

    Article  Google Scholar 

  48. Moharana S, Bhalla S (2019) Development and evaluation of an external reusable piezo-based concrete hydration-monitoring sensor. J Intell Mater Syst Struct 30(18–19):2770–2788. https://doi.org/10.1177/1045389X19873414

    Article  Google Scholar 

  49. Giurgiutiu V, Rogers CA (1999) Modeling of the electro-mechanical (E/M) impedance response of a damaged composite beam. In: Proceedings of the ASME winter annual meeting, ASME aerospace and materials divisions, adaptive structures and material systems symposium, vol. 59, Nashville, TN, 14–19 November, ASME, New York, pp. 39–46

  50. Park G, Inman DJ (2007) Structural health monitoring using piezoelectric impedance measurements. Philos Trans R Soc A Math Phys Eng Sci 365(1851):373–392. https://doi.org/10.1098/rsta.2006.1934

    Article  Google Scholar 

  51. Wang D, Zhu H (2011) Monitoring of the strength gain of concrete using embedded PZT impedance transducer. Constr Build Mater 25(9):3703–3708. https://doi.org/10.1016/j.conbuildmat.2011.04.020

    Article  Google Scholar 

  52. Tseng KK, Naidu AS (2002) Non-parametric damage detection and characterization using smart piezoceramic material. Smart Mater Struct 11(3):317. https://doi.org/10.1088/0964-1726/11/3/301

    Article  Google Scholar 

  53. Wang D, Song H, Zhu H (2013) Numerical and experimental studies on damage detection of a concrete beam based on PZT admittances and correlation coefficient. Constr Build Mater 49:564–574. https://doi.org/10.1016/j.conbuildmat.2013.08.074

    Article  Google Scholar 

  54. Ai D, Zhu H, Luo H, Yang J (2014) An effective electromechanical impedance technique for steel structural health monitoring. Constr Build Mater 73:97–104. https://doi.org/10.1016/j.conbuildmat.2014.09.029

    Article  Google Scholar 

  55. Tinoco HA, Marulanda DJ (2014) A new index for damage identification in active beams with electromechanical impedance technique approach to SHM. In Proceedings of the 2nd International Conference on Advanced Mechatronics, Design, and Manufacturing Technology (AMDM 2014), Bogota, Colombia, 22–24 October 2014, pp. 1–6

  56. Zhou P, Wang D, Zhu H (2018) A novel damage indicator based on the electromechanical impedance principle for structural damage identification. Sensors 18(7):2199. https://doi.org/10.3390/s18072199

    Article  Google Scholar 

  57. Yang Y, Lim YY, Soh CK (2008) Practical issues related to the application of the electromechanical impedance technique in the structural health monitoring of civil structures: II. Numerical verification. Smart Mat Struct 17(3):035009. https://doi.org/10.1088/0964-1726/17/3/035008

    Article  Google Scholar 

  58. Park S, Ahmad S, Yun CB, Roh Y (2006) Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques. Exp Mech 46(5):609–618. https://doi.org/10.1007/s11340-006-8734-0

    Article  Google Scholar 

  59. Li W, Wang J, Liu T, Luo M (2020) Electromechanical impedance instrumented circular piezoelectric-metal transducer for corrosion monitoring modeling and validation. Smart Mater Struct 29(3):035008. https://doi.org/10.1088/1361-665X/ab675c

    Article  Google Scholar 

  60. Liang Y, Li D, Parvasi SM, Kong Q, Lim I, Song G (2016) Bond-slip detection of concrete-encased composite structure using electro-mechanical impedance technique. Smart Mater Struct 25(9):095003. https://doi.org/10.1088/0964-1726/25/9/095003

    Article  Google Scholar 

  61. Li L, Xia Y, Chen G (2018) Experimental and numerical studies of debonding monitoring of FRP shear-strengthened beams using EMI technique. J Aerospace Eng 31(5):04018048. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000876

    Article  Google Scholar 

  62. Fan S, Li W, Kong Q, Feng Q, Song G (2018) Monitoring of pin connection loosening using eletromechanical impedance numerical simulation with experimental verification. J Intell Mater Syst Struct 29(9):1964–1973. https://doi.org/10.1177/1045389X18754354

    Article  Google Scholar 

  63. Guo B, Chen D, Huo L, Song G (2020) Monitoring of grouting compactness in tendon duct using multi-sensing electro-mechanical impedance method. Appl Sci 10(6):2018. https://doi.org/10.3390/app10062018

    Article  Google Scholar 

  64. Na WS, Baek J (2018) A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures. Sensors 18(5):1307. https://doi.org/10.3390/s18051307

    Article  Google Scholar 

  65. Hey F, Bhalla S, Soh CK (2006) Optimized parallel interrogation and protection of piezo-transducers in electromechanical impedance technique. J Intell Mater Syst Struct 17(6):457–468. https://doi.org/10.1177/1045389X06058792

    Article  Google Scholar 

  66. Na S, Lee HK (2013) A multi-sensing electromechanical impedance method for non-destructive evaluation of metallic structures. Smart Mater Struct 22(9):095011. https://doi.org/10.1088/0964-1726/22/9/095011

    Article  Google Scholar 

  67. Priya CB, Saravanan TJ, Balamonica K, Gopalakrishnan N, Rao ARM (2018) EMI based monitoring of early-age characteristics of concrete and comparison of serial/parallel multi-sensing technique. Constr Build Mater 191:1268–1284. https://doi.org/10.1016/j.conbuildmat.2018.10.079

    Article  Google Scholar 

  68. Balamonica K, Saravanan TJ, Priya CB, Gopalakrishnan N (2019) Piezoelectric sensor–based damage progression in concrete through serial/parallel multi-sensing technique. Struct Health Monit 19(2):339–356. https://doi.org/10.1177/1475921719845153

    Article  Google Scholar 

  69. Chen D, Huo L, Song G (2020) EMI based multi-bolt looseness detection using series/parallel multi-sensing technique. Smart Struct Syst 25(4):423–432. https://doi.org/10.12989/sss.2020.25.4.423

    Article  Google Scholar 

  70. Kim J, Grisso BL, Kim JK, Ha DS, Inman DJ (2008) Electrical modeling of piezoelectric ceramics for analysis and evaluation of sensory systems. In: Proceedings of the IEEE Sensors Applications Symposium, Atlanta, GA, 12–14 February 2008, pp. 122–127. IEEE, New York, USA. https://doi.org/10.1109/SAS13374.2008.4472956

  71. Na S, Tawie R, Lee HK (2012) Electromechanical impedance method of fiber-reinforced plastic adhesive joints in corrosive environment using a reusable piezoelectric device. J Intell Mater Syst Struct 23(7):737–747. https://doi.org/10.1177/1045389X12440754

    Article  Google Scholar 

  72. Mascarenas DL, Todd MD, Park G, Farrar CR (2007) Development of an impedance-based wireless sensor node for structural health monitoring. Smart Mater Struct 16(6):2137. https://doi.org/10.1088/0964-1726/16/6/016

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their constructive suggestions, which helped improve the article. This work was supported by National Natural Science Foundation of China (No. 51978079, No. 41904124), National Key R&D project (2016YFC0303703), National Major Science and Technology Special Projects (No. 2017ZX05019001), Hubei Provincial Natural Science Foundation of China (No. 2019CFB233).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhang Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Deng, H., Li, L. et al. A simple PZT transducer design for electromechanical impedance (EMI)-based multi-sensing interrogation. J Civil Struct Health Monit 11, 235–249 (2021). https://doi.org/10.1007/s13349-020-00449-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-020-00449-6

Keywords

Navigation