Skip to main content
Log in

Structural health monitoring research under varying temperature condition: a review

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

Suffering from solar radiation, day–night replacement and seasonal changes, the structure will produce notable temperature behaviour, which has a vital effect on the long-term process of the health monitoring. Previous studies show that there is a significant correlation between the measuring responses and temperature from health monitoring systems. To analyse the structural state more accurately, much literature employed health monitoring methods considering temperature effects. This paper reviews technical research concerning health monitoring of civil structures under varying temperature. Firstly, the correlation researches of structural measuring responses (dynamic and static responses) and temperature are reviewed, which includes the researches of the influence mechanism and the data statistics, and the studies of the influence of non-uniform temperature on responses are also reviewed. In addition, different types of separation and forecast methods of the temperature-induced part of the structural responses data are summarized, followed by a brief summary of benefits and drawbacks of these methods. Lastly, the recently proposed process frameworks of damage assessment considering temperature effects are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Chang PC, Flatau A, Liu SC (2003) Review paper: health monitoring of civil infrastructure. Struct Health Monit 2(3):257–267. https://doi.org/10.1177/1475921703036169

    Article  Google Scholar 

  2. Ou JP, Li H (2010) Structural health monitoring in mainland china: review and future trends. Struct Health Monit 9(3):219–231. https://doi.org/10.1177/1475921710365269

    Article  Google Scholar 

  3. Goyal D, Pabla BS (2016) The vibration monitoring methods and signal processing techniques for structural health monitoring: a review. Arch Comput Method Eng 23(4):585–594. https://doi.org/10.1007/s11831-015-9145-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Das S, Saha P, Patro SK (2016) Vibration-based damage detection techniques used for health monitoring of structures: a review. J Civ Struct Health Monit 6(3):477–507. https://doi.org/10.1007/s13349-016-0168-5

    Article  Google Scholar 

  5. João PS, Cremona C, André D et al (2015) Static-based early-damage detection using symbolic data analysis and unsupervised learning methods. Front Struct Civ Eng 9(1):1–16. https://doi.org/10.1007/s11709-014-0277-3

    Article  Google Scholar 

  6. Eun HC, Park SY, Lee MS (2013) Static-based damage detection using measured strain and deflection data. Appl Mech Mater 256–259:1097–1100. https://doi.org/10.1007/s11709-014-0277-3

    Article  Google Scholar 

  7. Kullaa J (2001) Elimination of environmental influences from damage sensitive features in a structural health monitoring systems. Struct Health Monit Demands Chall. https://doi.org/10.1177/1045389X08096050

    Article  Google Scholar 

  8. Farrar CR, Doebling SW, Cornwell PJ et al (1996) Variability of modal parameters measured on the Alamosa Canyon Bridge. Proc SPIE 3089

  9. Cornwell P, Farrar CR, Doebling SW et al (1999) Environmental variability of modal properties. Exp Tech 23(6):45–48. https://doi.org/10.1111/j.1747-1567.1999.tb01320.x

    Article  Google Scholar 

  10. Duan YF, Li Y, Xiang YQ (2011) Strain-temperature correlation analysis of a tied arch bridge using monitoring data. In: 2011 international conference on multimedia technology. IEEE, Piscataway, pp 6025–6028. https://doi.org/10.1109/ICMT.2011.6002979

  11. Ding Y, Li AQ (2011) Assessment of bridge expansion joints using long-term displacement measurement under changing environmental conditions. Front Struct Civ Eng 5(3):37–380. https://doi.org/10.1007/s11709-011-0122-x

    Article  Google Scholar 

  12. Xia Y, Chen B, Weng S et al (2012) Temperature effect on vibration properties of civil structures: a literature review and case studies. J Civ Struct Health Monit 2(1):29–46. https://doi.org/10.1007/s13349-011-0015-7

    Article  Google Scholar 

  13. Li H, Zhang DY, Bao YQ et al (2012) A numerical investigation of temperature effect on modal parameters of the China National Aquatics Center. Adv Struct Eng 15(7):1139–1153. https://doi.org/10.1260/1369-4332.15.7.1139

    Article  Google Scholar 

  14. Xia Y, Ha H, Zanardo G et al (2006) Long term vibration monitoring of an RC slab: temperature and humidity effect. Eng Struc 28(3):441–452. https://doi.org/10.1016/j.engstruct.2005.09.001

    Article  Google Scholar 

  15. Moaveni B, Behmanesh I (2012) Effects of changing ambient temperature on finite element model updating of the Dowling Hall Footbridge. Eng Struct 43(2012):58–68. https://doi.org/10.1016/j.engstruct.2012.05.009

    Article  Google Scholar 

  16. Regni M, Arezzo D, Carbonari S et al (2018) Effect of environmental conditions on the modal response of a 10-story reinforced concrete tower. Shock Vib. https://doi.org/10.1016/j.engstruct.2012.05.009

    Article  Google Scholar 

  17. Kita A, Cavalagli N, Ubertini F (2019) Temperature effects on static and dynamic behavior of Consoli Palace in Gubbio, Italy. Mech Syst Signal Process 120:180–202. https://doi.org/10.1016/j.ymssp.2018.10.021

    Article  Google Scholar 

  18. Jiao YB, Liu HB, Wang XQ et al (2014) Temperature effect on mechanical properties and damage identification of concrete structure. Adv Mater Sci Eng 2014:1–10. https://doi.org/10.1155/2014/191360

    Article  Google Scholar 

  19. Zhao DX, Wu ZS (2007) Simulation of the effect of temperature variation on damage detection in a long-span cable-stayed bridge. Struct Health Monit 6(3):177–189. https://doi.org/10.1177/1475921707081107

    Article  Google Scholar 

  20. Yan AM, Kerschen G, DeBoe P et al (2005) Structural damage diagnosis under changing environmental conditions—part 1: linear analysis. J Mech Syst Signal Process 19(4):847–864. https://doi.org/10.1016/j.ymssp.2004.12.002

    Article  Google Scholar 

  21. Deraemaeker A, Reynders E, Roeck GD et al (2007) Vibration-based structural health monitoring using output-only measurements under changing environment. Mech Syst Signal Process 22(1):34–56. https://doi.org/10.1016/j.ymssp.2007.07.004

    Article  Google Scholar 

  22. Meruane V, Heylen W (2011) Structural damage assessment under varying temperature conditions. Struct Health Monit 11(3):345–357. https://doi.org/10.1177/1475921711419995

    Article  Google Scholar 

  23. Giraldo DF, Dyke SJ, Caicedo JM (2006) Damage detection accommodating varying environmental conditions. Struct Health Monit 5(2):155–172. https://doi.org/10.1177/1475921706057987

    Article  Google Scholar 

  24. Gu JF, Gül M, Wu X (2017) Damage detection under varying temperature using artificial neural networks. Struc Control Health Monit 24(11):e1998. https://doi.org/10.1002/stc.1998

    Article  Google Scholar 

  25. Liang Y, Li D, Song G et al (2018) Frequency Co-integration-based damage detection for bridges under the influence of environmental temperature variation. Measurement 125(2018):163–175. https://doi.org/10.1016/j.measurement.2018.04.034

    Article  Google Scholar 

  26. Huang MS, Gül M, Zhu HP (2018) Vibration-based structural damage identification under varying temperature effects. J Aerosp Eng 31(3):4018014. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000829

    Article  Google Scholar 

  27. Huang MS, Cheng SX, Zhang HY et al (2019) Structural damage identification based on PSO-CS hybrid algorithm under temperature variations. Int J Struct Stab Dyn 19(11):1950139. https://doi.org/10.1142/S0219455419501396

    Article  Google Scholar 

  28. Peeters B, Maeck J, Roeck GD (2001) Vibration-based damage detection in civil engineering: excitation sources and temperature effects. Smart Mater Struct 10(3):518–527. https://doi.org/10.1088/0964-1726/10/3/314

    Article  Google Scholar 

  29. Fu Y, DeWolf JT (2001) Monitoring and analysis of a bridge with partially restrained bearings. J Bridge Eng 6(1):23–29. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:1(23)

    Article  Google Scholar 

  30. Alampalli S (1998) Influence of in-service environment on modal parameters. In: Proceedings of SPIE - the international society for optical engineering. SPIE, Washington, pp 111–116

  31. Kim JT, Park JH, Lee BJ (2007) Vibration-based damage monitoring in model plate-girder bridges under uncertain temperature conditions. Eng Struct 29(7):1354–1365. https://doi.org/10.1016/j.engstruct.2006.07.024

    Article  Google Scholar 

  32. Ni YQ, Fan KQ, Zheng G et al (2005) Automatic modal identification and variability in measured modal vectors of a cable-stayed bridge. Struct Eng Mech 19:123–139. https://doi.org/10.12989/sem.2005.19.2.123

    Article  Google Scholar 

  33. Balmes E, Basseville M, Bourquin F et al (2008) Merging sensor data from multiple temperature scenarios for vibration monitoring of civil structures. Struct Health Monit 7(2):129–142. https://doi.org/10.1177/1475921708089823

    Article  Google Scholar 

  34. Moser P, Moaveni B (2011) Environmental effects on the identified natural frequencies of the Dowling Hall Footbridge. Mech Syst Signal Process 25(7):2336–2357. https://doi.org/10.1016/j.ymssp.2011.03.005

    Article  Google Scholar 

  35. Zhou HF, Ni YQ, Ko JM (2010) Constructing input to neural networks for modeling temperature-caused modal variability: mean temperatures, effective temperatures, and principal components of temperatures. Eng Struct 32(6):1747–1759. https://doi.org/10.1016/j.engstruct.2010.02.026

    Article  Google Scholar 

  36. Ni YQ, Xia Y, Liao WY et al (2009) Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower. Struct Control Health Monit 16(1):73–98. https://doi.org/10.1002/stc.303

    Article  Google Scholar 

  37. Xia Y, Ni YQ, Ko JM et al (2008) Development of a structural health monitoring benchmark problem for high-rise slender structures. Adv Sci Technol 56:489–494. https://doi.org/10.4028/www.scientific.net/AST.56.489

    Article  Google Scholar 

  38. Ubertini F, Comanducci G, Cavalagli N et al (2016) Environmental effects on natural frequencies of the San Pietro bell tower in Perugia, Italy, and their removal for structural performance assessment. Mech Syst Signal Process 82:307–322. https://doi.org/10.1016/j.ymssp.2016.05.025

    Article  Google Scholar 

  39. Peeters B, Roeck GD (2001) One-year monitoring of the Z24-Bridge: environmental effects versus damage events. Earthq Eng Struct Dyn 30(2):149–171. https://doi.org/10.1002/1096-9845(200102)30:23.0.CO;2-Z

    Article  Google Scholar 

  40. Ni YQ, Hua XG, Fan KQ et al (2005) Correlating modal properties with temperature using long-term monitoring data and support vector machine technique. Eng Struct 27(12):1762–1773. https://doi.org/10.1016/j.engstruct.2005.02.020

    Article  Google Scholar 

  41. Desjardins SL, Londono NA, Lau DT et al (2006) Real-time data processing, analysis and visualization for structural monitoring of the confederation bridge. Adv Struct Eng 9(1):141–157. https://doi.org/10.1260/136943306776232864

    Article  Google Scholar 

  42. Liu CY, DeWolf JT (2007) Effect of temperature on modal variability of a curved concrete bridge under ambient loads. J Struc Eng 133(12):1742–1751. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:12(1742)

    Article  Google Scholar 

  43. Nayeri RD, Masri SF, Ghanem RG et al (2008) A novel approach for the structural identification and monitoring of a full-scale 17-story building based on ambient vibration measurements. Smart Mater Struct 17(2):1–19. https://doi.org/10.1088/0964-1726/17/2/025006

    Article  Google Scholar 

  44. Li H, Li SL, Ou JP et al (2010) Modal identification of bridges under varying environmental conditions: temperature and wind effects. Struct Control Health Monit 17(5):499–512. https://doi.org/10.1002/stc.319

    Article  Google Scholar 

  45. Yuen KV, Kuok SC (2010) Ambient interference in long-term monitoring of buildings. Eng Struct 32(8):2379–2386. https://doi.org/10.1016/j.engstruct.2010.04.012

    Article  Google Scholar 

  46. Faravelli L, Ubertini F, Fuggini C (2011) System identification of a super high-rise building via a stochastic subspace approach. Smart Struct Syst 7(2):133–152. https://doi.org/10.12989/sss.2011.7.2.133

    Article  MATH  Google Scholar 

  47. Yarnold MT (2013) Temperature-based structural identification and health monitoring for long-span bridges. Dissertation, Drexel University.

  48. Yarnold MT, Franklin LM, Aktan AE (2015) Temperature-based structural identification of long-span bridges. J Struct Eng 141(11):04015027. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001270

    Article  Google Scholar 

  49. Yarnold MT, Fl M (2015) Temperature-based structural health monitoring baseline for long-span bridges. Eng Struct 86:157–167. https://doi.org/10.1016/j.engstruct.2014.12.042

    Article  Google Scholar 

  50. Murphy B, Yarnold MT (2018) Temperature-driven structural identification of a steel girder bridge with an integral abutment. Eng Struct 155:209–221. https://doi.org/10.1016/j.engstruct.2017.10.074

    Article  Google Scholar 

  51. Lyu M, Zhu X, Yang Q (2017) Connection stiffness identification of historic timber buildings using temperature-based sensitivity analysis. Eng Struct 131:180–191. https://doi.org/10.1016/j.engstruct.2016.11.012

    Article  Google Scholar 

  52. Xu X, Ren Y, Huang Q et al (2020) Thermal response separation for bridge long-term monitoring systems using multi-resolution wavelet-based methodologies. J Civ Struct Health Monit 10(3):527–541. https://doi.org/10.1007/s13349-020-00402-7

    Article  Google Scholar 

  53. Xu X, Huang Q, Ren Y et al (2019) Modeling and separation of thermal effects from cable-stayed bridge response. J Bridge Eng 24(5):04019028. https://doi.org/10.1061/(asce)be.1943-5592.0001387

    Article  Google Scholar 

  54. Zhou Y, Sun L (2019) Insights into temperature effects on structural deformation of a cable-stayed bridge based on structural health monitoring. Struct Health Monit 18(3):778–791. https://doi.org/10.1177/1475921718773954

    Article  Google Scholar 

  55. Xia Q, Zhang J, Tian YD et al (2017) Experimental study of thermal effects on a long-span suspension bridge. Am Soc Civ Eng 22(7):4017034. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001083

    Article  Google Scholar 

  56. Xia Q, Cheng YY, Zhang J et al (2016) In-service condition assessment of a long-span suspension bridge using temperature-induced strain data. Am Soc Civ Eng 22(3):4016124. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001003

    Article  Google Scholar 

  57. Luo YZ, Mei YJ, Shen YB et al (2013) Measurement and analysis of steel structure temperature and stress in National Stadium. J Build Struct 34(11):24–32. https://doi.org/10.14006/j.jzjgxb.2013.11.005

    Article  Google Scholar 

  58. Ni YQ, Hua XG, Wong KY et al (2007) Assessment of bridge expansion joints using long-term. Am Soc Civ Eng 21(2):143–151. https://doi.org/10.1061/(asce)0887-3828(2007)21:2(143)

    Article  Google Scholar 

  59. Liang ZB, Zhang J, Cao J et al (2009) Separating temperature effect from state monitoring of concrete bridges. In: Proceedings of SPIE - the international society for optical engineering, vol 7295-72952N. SPIE, Washington, pp 1–9. https://doi.org/10.1117/12.817848

  60. Li SL, Li H, Ou JP et al (2009) Integrity strain response analysis of a long span cable-stayed bridge. Key Eng Mater 413–414:775–783. https://doi.org/10.4028/www.scientific.net/KEM.413-414.775

    Article  Google Scholar 

  61. Hu YD, Hou RR, Xia Q et al (2018) Temperature-induced displacement of supertall structures: a case study. Adv Struct Eng 22(4):982–996. https://doi.org/10.1177/1369433218795288

    Article  Google Scholar 

  62. Lee J, Loh KJ, Choi HS et al (2019) Effect of structural change on temperature behavior of a long-span suspension bridge pylon. Int J Steel Struct 19(6):2073–2089. https://doi.org/10.1007/s13296-019-00279-3

    Article  Google Scholar 

  63. Xia Y, Xu YL, Wei ZL et al (2011) Variation of structural vibration characteristics versus non-uniform temperature distribution. Eng Struct 33(1):146–153. https://doi.org/10.1016/j.engstruct.2010.09.027

    Article  Google Scholar 

  64. Liu J, Liu YJ, Lei J et al (2019) Long-term field test of temperature gradients on the composite girder of a long-span cable-stayed bridge. Adv Struct Eng 22(13):2785–2798. https://doi.org/10.1177/1369433219851300

    Article  Google Scholar 

  65. Reilly J, Glisic B (2018) Identifying time periods of minimal thermal gradient for temperature-driven structural health monitoring. Sensors 18(3):734. https://doi.org/10.3390/s18030734

    Article  Google Scholar 

  66. Xia Y, Chen B, Zhou X et al (2012) Field monitoring and numerical analysis of Tsing Ma suspension bridge temperature behavior. Struct Control Health Monit 20(4):560–575. https://doi.org/10.1002/stc.515

    Article  Google Scholar 

  67. Jang J, Smyth AW (2020) Data-driven models for temperature distribution effects on natural frequencies and thermal prestress modeling. Struct Control Health Monit 27(2):e2489. https://doi.org/10.1002/stc.2489

    Article  Google Scholar 

  68. Sohn H, Dzwonczyk M, Straser EG et al (1999) An experimental study of temperature effect on modal parameters of the Alamosa Canyon Bridge. Earthq Eng Struct Dyn 28(8):879–897. https://doi.org/10.1002/(sici)1096-9845(199908)28:8%3c879::aid-eqe845%3e3.0.co;2-v

    Article  Google Scholar 

  69. Kromanis R, Kripakaran P (2013) Support vector regression for anomaly detection from measurement histories. Adv Eng Inform 27(4):486–495. https://doi.org/10.1016/j.aei.2013.03.002

    Article  Google Scholar 

  70. Kromanis R, Kripakaran P (2014) Predicting thermal response of bridges using regression models derived from measurement histories. Comput Struct 136(2014):64–77. https://doi.org/10.1016/j.compstruc.2014.01.026

    Article  Google Scholar 

  71. Zhou HF, Ni YQ, Ko JM (2011) Eliminating temperature effect in vibration-based structural damage detection. J Eng Mech 137(12):785–796. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000273

    Article  Google Scholar 

  72. Jin C, Jang S, Sun X et al (2016) Damage detection of a highway bridge under severe temperature changes using extended Kalman filter trained neural network. J Civ Struct Health Monit 6(3):545–560. https://doi.org/10.1007/s13349-016-0173-8

    Article  Google Scholar 

  73. Wang ZP, Huang MS, Gu JF (2020) Temperature effects on vibration-based damage detection of a reinforced concrete slab. Appl Sci 10(8):2869. https://doi.org/10.3390/app10082869

    Article  Google Scholar 

  74. Jin SS, Cho S, Jung HJ (2015) Adaptive reference updating for vibration-based structural health monitoring under varying environmental conditions. Comput Struct 158(OCT.):211–224. https://doi.org/10.1016/j.compstruc.2015.06.001

    Article  Google Scholar 

  75. Yan AM, Kerschen G, De Boe P et al (2005) Structural damage diagnosis under changing environmental conditions—part 2: local PCA for nonlinear cases. J Mech Syst and Signal Process 19:865–880. https://doi.org/10.1016/j.ymssp.2004.12.003

    Article  Google Scholar 

  76. Kromanis R (2015) Structural performance evaluation of bridges: characterizing and integrating thermal response. Dissertation, University of Exeter

  77. Kromanis R, Kripakaran P (2016) SHM of bridges: characterising thermal response and detecting anomaly events using a temperature-based measurement interpretation approach. J Civ Struct Health Monit 6(2):237–254. https://doi.org/10.1007/s13349-016-0161-z

    Article  Google Scholar 

  78. William SLW, Chen YT, Roberts GW et al (2017) Separating damage from environmental effects affecting civil structures for near real-time damage detection. Struct Health Monit 17(4):850–868. https://doi.org/10.1177/1475921717722060

    Article  Google Scholar 

  79. Xu MQ, Wang S, Li H (2018) A residual strain energy based damage localisation method for offshore platforms under environmental variations. Ships Offshore Struc 2018:1–8. https://doi.org/10.1080/17445302.2018.1558727

    Article  Google Scholar 

  80. Kundu T, Jin SS, Jung HJ (2014) Vibration-based structural health monitoring using adaptive statistical method under varying environmental condition. Conf Health Monit Struct Biol Syst. https://doi.org/10.1117/12.2046088

    Article  Google Scholar 

  81. Lim HJ, Kim MK, Sohn H et al (2011) Impedance based damage detection under varying temperature and loading conditions. NDT E Int 44(8):740–750. https://doi.org/10.1016/j.ndteint.2011.08.003

    Article  Google Scholar 

  82. Kramer MA (1991) Nonlinear principal component analysis using auto associative neural networks. AIChE J 37(2):233–243. https://doi.org/10.1002/aic.690370209

    Article  Google Scholar 

  83. Ko JM, Sun ZG, Ni YQ (2001) A three-stage scheme for damage detection of Kap Shui Mun cable-stayed bridge. Struct Eng Mech Comput 2001:111–122. https://doi.org/10.1016/B978-008043948-8/50011-4

    Article  Google Scholar 

  84. Ko JM, Sun ZG, Ni YQ (2002) Multi-stage identification scheme for detecting damage in cable-stayed Kap Shui Mun bridge. Eng Struct 24(7):857–868. https://doi.org/10.1016/S0141-0296(02)00024-X

    Article  Google Scholar 

  85. Sohn H, Worden K, Farrar CR (2002) Statistical damage classification under changing environmental and operational conditions. J Intell Mater Syst Struct 13(9):561–574. https://doi.org/10.1106/104538902030904

    Article  Google Scholar 

  86. Hsu TY, Loh CH (2010) Damage detection accommodating nonlinear environmental effects by nonlinear principal component analysis. Struct Control Health Monit 17(3):338–354. https://doi.org/10.1002/stc.320

    Article  Google Scholar 

  87. Zhang HY, Gül M, Kostić B (2019) Eliminating temperature effects in damage detection for civil infrastructure using time series analysis and autoassociative neural networks. Am Soc Civ Eng 32(2):4019001. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000987

    Article  Google Scholar 

  88. Ye X, Wu Y, Zhang L et al (2020) Ambient effect filtering using NLPCA-SVR in high-rise buildings. Sensors 20(4):1143. https://doi.org/10.3390/s20041143

    Article  Google Scholar 

  89. Huang NE, Shen Z, Long SR et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A Math Phys Eng Sci 454(1971):903–995. https://doi.org/10.1098/rspa.1998.0193

    Article  MathSciNet  MATH  Google Scholar 

  90. Wu WH, Chen CC, Jhou JW et al (2018) A rapidly convergent empirical mode decomposition method for analyzing the environmental temperature effects on stay cable force. Comput Aided Civ Inf 00(2018):1–19. https://doi.org/10.1111/mice.12355

    Article  Google Scholar 

  91. Zhu Y, Ni YQ, Jesus A et al (2018) Thermal strain extraction methodologies for bridge structural condition assessment. Smart Mater Struct 27(10):105051. https://doi.org/10.1088/1361-665X/aad5fb

    Article  Google Scholar 

  92. Ni YQ, Xia HW, Wong KY et al (2012) In-service condition assessment of bridge deck using long-term monitoring data of strain response. J Bridge Eng 17(6):876–885. https://doi.org/10.1061/(asce)be.1943-5592.0000321

    Article  Google Scholar 

  93. Wu BJ, Li ZX, Chan T, Wang Y (2014) Multiscale features and information extraction of online strain for long-span bridges. Smart Struct Syst 14(4):679–697. https://doi.org/10.12989/sss.2014.14.4.679

    Article  Google Scholar 

  94. Wang H, Zhang YM, Mao JX et al (2019) Modeling and forecasting of temperature-induced strain of a long-span bridge using an improved Bayesian dynamic linear model. Eng Struct 192:220–232. https://doi.org/10.1016/j.engstruct.2019.05.006

    Article  Google Scholar 

  95. Erazo K, Sen D, Nagarajaiah S et al (2019) Vibration-based structural health monitoring under changing environmental conditions using Kalman filtering. Mech Syst Signal Process 117(2019):1–15. https://doi.org/10.1016/j.ymssp.2018.07.041

    Article  Google Scholar 

  96. Zhou S, Song W (2018) Environmental-effects-embedded model updating method considering environmental impacts. Struct Control Health Monit 25(3):e2116. https://doi.org/10.1002/stc.2116

    Article  Google Scholar 

  97. Shokrani Y, Dertimanis VK, Chatzi E et al (2018) On the use of mode shape curvatures for damage localization under varying environmental conditions. Struct Control Health Monit 25(4):e2132. https://doi.org/10.1002/stc.2132

    Article  Google Scholar 

  98. Kostic B, Gul M (2017) Vibration-based damage detection of bridges under varying temperature effects using time-series analysis and artificial neural networks. J Bridge Eng 22(10):04017065. https://doi.org/10.1061/(asce)be.1943-5592.0001085

    Article  Google Scholar 

  99. Surace C, Bovsunovsky A (2020) The use of frequency ratios to diagnose structural damage in varying environmental conditions. Mech Syst Signal Process 136:106523. https://doi.org/10.1016/j.ymssp.2019.106523

    Article  Google Scholar 

  100. Kumar K, Biswas PK, Dhang N (2020) Time series-based SHM using PCA with application to ASCE benchmark structure. J Civ Struct Health Monit. https://doi.org/10.1007/s13349-020-00423-2

    Article  Google Scholar 

  101. Sarmadi H, Karamodin A (2020) A novel anomaly detection method based on adaptive Mahalanobis-squared distance and one-class kNN rule for structural health monitoring under environmental effects. Mech Syst Signal Process 140(6):106495. https://doi.org/10.1016/j.ymssp.2019.1064950888-3270

    Article  Google Scholar 

  102. Kulprapha N, Warnitchai P (2012) Structural health monitoring of continuous prestressed concrete bridges using ambient thermal responses. Eng Struct 40:20–38. https://doi.org/10.1016/j.engstruct.2012.02.001

    Article  Google Scholar 

  103. Jesus A, Brommer P, Zhu Y et al (2017) Comprehensive Bayesian structural identification using temperature variation. Eng Struct 141:75–82. https://doi.org/10.1016/j.engstruct.2017.01.060

    Article  Google Scholar 

  104. Jesus A, Brommer P, Westgate R et al (2019) Bayesian structural identification of a long suspension bridge considering temperature and traffic load effects. Struct Health Monit 18(4):1310–1323. https://doi.org/10.1177/1475921718794299

    Article  Google Scholar 

  105. Zhu YJ, Ni YQ, Jin H et al (2019) A temperature-driven MPCA method for structural anomaly detection. Eng Struct 190:447–458. https://doi.org/10.1016/j.engstruct.2019.04.004

    Article  Google Scholar 

Download references

Acknowledgements

The authors express our appreciation for financial support by: the Specialized Research Fund of the National Nature Science Foundation of China (no. 51525803), the Joint Funds of the National Natural Science Foundation of China (U1939208), Overseas Expertise Introduction Project for Discipline Innovation (B20039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Ma, Q., Xu, J. et al. Structural health monitoring research under varying temperature condition: a review. J Civil Struct Health Monit 11, 149–173 (2021). https://doi.org/10.1007/s13349-020-00444-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-020-00444-x

Keywords

Navigation