Variability in Mediterranean-Climate Waters: Space, Time, and Intensity

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Hydrology".

Deadline for manuscript submissions: closed (30 September 2017) | Viewed by 95774

Special Issue Editors


E-Mail Website
Guest Editor
Department of Landscape Architecture and Environmental Planning, UC Berkeley, Berkeley, USA
EURIAS fellow, Collegium—Lyon Institute of Advanced Studies, ENS; CNRS UMR 5600 Environnement Ville Société, University of Lyon, Lyon, France
Interests: fluvial geomorphology; environmental planning; river restoration; sustainable floodplain management; urban rivers; social and biophysical connectivity of urban rivers; sustainable management of sediment in rivers and reservoirs; reservoir sedimentation; sediment starvation
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Near Eastern Studies, Director Phoebe Hearst Museum, University of California Berkeley, Berkeley, CA 94720, USA
Interests: archaeology; near eastern archaeology; middle east; arid environments; ancient water supply adaption; anthropology; heritage; tourism; archeological

Special Issue Information

Dear Colleagues,

Mediterranean-climate regions face distinct challenges to natural resource management, land-use planning, and design of the built environment: summer drought; highly seasonal precipitation and river flow, and the consequent adaptations to these conditions needed by biota; high inter-annual variability in precipitation; and episodic floods and sediment transport. Nonetheless, civilizations have flourished in water-limited Mediterranean environments for millennia. An understanding of how ancient societies adapted to these environmental stressors can inform our current challenges, as both the developed and developing world confront growing water shortages driven by population increases, expansion of irrigated agriculture, and climate change. To reduce uncertainty of water availability in Mediterranean-climate regions, modern societies have developed legal and institutional arrangements allocate water supplies and built water supply and control infrastructure at a scale far exceeding the degree of control seen in more humid climates, altering the seasonality of flow of streams and rivers in these regions.

This Special Issue examines variability in water in Mediterranean-climate regions from physical, biological, social, and institutional perspectives, drawing lessons from the range of adaptations employed by diverse cultures, many of which may be applicable elsewhere, especially as climate change is expected to increase the variability of precipitation worldwide.

Prof. Dr. Matt Kondolf
Dr. Ben Porter
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

 

Keywords

  • Mediterranean climates
  • hydrologic variability
  • adaptation
  • episodic channels
  • reservoir sustainability

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 246 KiB  
Article
Resilient Governance of Water Regimes in Variable Climates: Lessons from California’s Hydro-Ecological Zones
by Jeff Romm, Esther Conrad and Inger Elisabeth Måren
Water 2018, 10(2), 196; https://doi.org/10.3390/w10020196 - 12 Feb 2018
Cited by 2 | Viewed by 4225
Abstract
Highly variable water regimes, such as California’s, contain distinctive problems in the pursuit of secure timing, quantities and distributions of highly variable flows. Their formal and informal systems of water control must adapt rapidly to forceful and unpredictable swings on which the survival [...] Read more.
Highly variable water regimes, such as California’s, contain distinctive problems in the pursuit of secure timing, quantities and distributions of highly variable flows. Their formal and informal systems of water control must adapt rapidly to forceful and unpredictable swings on which the survival of diversified ecosystems, expansive settlement patterns and market-driven economies depends. What constitutes resilient water governance in these high-variability regimes? Three bodies of theory—state resource government, resilience and social mediation—inform our pursuit of governance that adapts effectively to these challenges. Using evidence drawn primarily from California research and participation in the policy and practice of water governance, we identify two stark barriers to learning, adaptation and resilience in high-variability conditions: (1) the sharp divide between modes of governance for ecological (protective) and for social (distributive) resilience and (2) the separation between predominant paradigms of water governance in “basins” (shared streamflow) and in “plains” (minimized social risk). These sources of structural segregation block adaptive processes and diminish systemic resilience, creating need for mediating spaces that increase permeability, learning and adaptation across structural barriers. We propose that the magnitude and diversity of need are related directly to the degree of hydro-climatic variability. Full article
8001 KiB  
Article
Ancient to Recent-Past Runoff Harvesting Agriculture in Recharge Playas of the Hyper-Arid Southern Israel
by Ilan Stavi, Rahamim Shem-Tov, Gidon Ragolsky and Judith Lekach
Water 2017, 9(12), 991; https://doi.org/10.3390/w9120991 - 18 Dec 2017
Cited by 9 | Viewed by 4541
Abstract
Recharge playas are prevalent throughout the hyper-arid southern Negev and Arava Valley of Israel. While some of these playas are terminal, others were found to be not absolutely terminal, allowing, under extreme floods, the outlet of water from their beds to a draining, [...] Read more.
Recharge playas are prevalent throughout the hyper-arid southern Negev and Arava Valley of Israel. While some of these playas are terminal, others were found to be not absolutely terminal, allowing, under extreme floods, the outlet of water from their beds to a draining, ephemeral channel. Indicators for ancient to recent-past agricultural practicing were recorded for two playas. In one of them, this included the archaeological remains of seven Byzantine-Age stone terraces across the playa bed, indicating ancient runoff harvesting agriculture. In another playa, the agricultural indicator included observations by key informants who reported the cropping of barley and wheat by Bedouin populations until the mid-1990s. This was supported by rare bibliographic sources, reporting the cropping of cereals at this site by Bedouins during the 1930s and 1940s. Agro-hydrological assessments of seven playas and their catchments were conducted, revealing a marginal agronomic potential under the current climatic conditions and only for a small number of them. The results highlight the profound environmental know-how of local populations that inhabited this harsh region. Furthermore, the results coincide with previous studies, which have reported drier climatic conditions at present compared to those in ancient times, and even compared to those during the mid-1990s. Full article
Show Figures

Figure 1

3829 KiB  
Article
Sustainable Water Management in the Tourism Economy: Linking the Mediterranean’s Traditional Rainwater Cisterns to Modern Needs
by Jared Enriquez, David C. Tipping, Jung-Ju Lee, Abhinav Vijay, Laura Kenny, Susan Chen, Nikolaos Mainas, Gail Holst-Warhaft and Tammo S. Steenhuis
Water 2017, 9(11), 868; https://doi.org/10.3390/w9110868 - 08 Nov 2017
Cited by 17 | Viewed by 8531
Abstract
Communities on islands with mass-tourism, like Santorini, rely on vast quantities of water to develop the local economy. Today’s inhabitants of Santorini have largely abandoned the traditional cisterns that were used to sustain the island’s pre-modern civilizations in favor of water obtained from [...] Read more.
Communities on islands with mass-tourism, like Santorini, rely on vast quantities of water to develop the local economy. Today’s inhabitants of Santorini have largely abandoned the traditional cisterns that were used to sustain the island’s pre-modern civilizations in favor of water obtained from desalinization, ship deliveries, and well withdrawals. In June 2016, Cornell University researchers worked with the Water and Sewage Authority of Thera (DEYATH) to assess the viability of improving sustainability and water efficiency by restoring traditional rainwater harvesting and storage cisterns. The team surveyed five cisterns, held meetings with water authority staff and mayoral leadership, conducted interviews with local tourism stakeholders, and coordinated with Global Water Partnership-Mediterranean. One conclusion was that cisterns could be rehabilitated as decentralized storage reservoirs and integrated into the island’s centralized water systems, or alternatively, serve as educational and cultural spaces used to communicate the importance of water to residents and tourists. The research findings highlight how multi-stakeholder partnerships could assist local authorities with developing new water management initiatives to foster more sustainable models of tourism development. Full article
Show Figures

Figure 1

19130 KiB  
Article
Characterizing Precipitation Variability and Trends in the World’s Mediterranean-Climate Areas
by Matthew J. Deitch, Michele J. Sapundjieff and Shane T. Feirer
Water 2017, 9(4), 259; https://doi.org/10.3390/w9040259 - 06 Apr 2017
Cited by 75 | Viewed by 15019
Abstract
The Mediterranean climate is principally characterized by warm, dry summers and cool, wet winters. However, there are large variations in precipitation dynamics in regions with this climate type. We examined the variability of precipitation within and among Mediterranean-climate areas, and classified the Mediterranean [...] Read more.
The Mediterranean climate is principally characterized by warm, dry summers and cool, wet winters. However, there are large variations in precipitation dynamics in regions with this climate type. We examined the variability of precipitation within and among Mediterranean-climate areas, and classified the Mediterranean climate as wet, moderate, or dry based on annual precipitation; and strongly, moderately, or weakly seasonal based on percentage of precipitation during summer. Mediterranean biomes are mostly dry (<700 mm annually) but some areas are wet (>1300 mm annually); and many areas are weakly seasonal (>12% of annual precipitation during summer). We also used NOAA NCDC climate records to characterize interannual variability of annual and dry-season precipitation, as well as trends in annual, winter, and dry-season precipitation for 337 sites that met the data quality criteria from 1975 to 2015. Most significantly, sites in many Mediterranean-climate regions show downward trends in annual precipitation (southern California, Spain, Australia, Chile, and Northern Italy); and most of North America, the Mediterranean basin, and Chile showed downward trends in summer precipitation. Variations in annual and summer precipitation likely contribute to the high biodiversity and endemism characteristic of Mediterranean-climate biomes; the data indicate trends toward harsher conditions over the past 40 years. Full article
Show Figures

Figure 1

1965 KiB  
Article
Collaborative Approaches to Flow Restoration in Intermittent Salmon-Bearing Streams: Salmon Creek, CA, USA
by Cleo Woelfle-Erskine
Water 2017, 9(3), 217; https://doi.org/10.3390/w9030217 - 14 Mar 2017
Cited by 10 | Viewed by 5971
Abstract
In Mediterranean-climate regions of California and southern Oregon, juvenile salmon depend on groundwater aquifers to sustain their tributary habitats through the dry summers. Along California’s North Coast streams, private property regimes on land have created commons tragedies in groundwater and salmon fisheries, both [...] Read more.
In Mediterranean-climate regions of California and southern Oregon, juvenile salmon depend on groundwater aquifers to sustain their tributary habitats through the dry summers. Along California’s North Coast streams, private property regimes on land have created commons tragedies in groundwater and salmon fisheries, both classic examples of commons that are often governed collectively and sustainably by their users. Understanding the linkages between salmon and groundwater is one major focus of salmon recovery and climate change adaptation planning in central California and increasingly throughout the Pacific Northwest. In this paper, I use extended field interviews and participant-observation in field ecology campaigns and regulatory forums to explore how, in one water-scarce, salmon-bearing watershed on California’s central coast, collaborators are synthesizing agency and landowner data on groundwater and salmon management. I focus on three projects undertaken by citizen scientists in collaboration with me and Gold Ridge Resource Conservation District staff: salmonid censuses, mapping of wet and dry stream reaches and well monitoring. I find that collaborative research initiated by local residents and agency personnel has, in some cases, created a new sense of ecological possibility in the region. I also consider some limitations of this collaborations, namely the lack of engagement with indigenous Pomo and Miwok tribal members, with the Confederated Tribes of Graton Rancheria and with farmworkers and other marginalized residents, and suggest strategies for deepening environmental justice commitments in future collaborative work. Full article
Show Figures

Figure 1

2908 KiB  
Article
Climate Variability Structures Plant Community Dynamics in Mediterranean Restored and Reference Tidal Wetlands
by Dylan E. Chapple, Phyllis Faber, Katharine N. Suding and Adina M. Merenlender
Water 2017, 9(3), 209; https://doi.org/10.3390/w9030209 - 13 Mar 2017
Cited by 10 | Viewed by 4976
Abstract
In Mediterranean regions and other areas with variable climates, interannual weather variability may impact ecosystem dynamics, and by extension ecological restoration projects. Conditions at reference sites, which are often used to evaluate restoration projects, may also be influenced by weather variability, confounding interpretations [...] Read more.
In Mediterranean regions and other areas with variable climates, interannual weather variability may impact ecosystem dynamics, and by extension ecological restoration projects. Conditions at reference sites, which are often used to evaluate restoration projects, may also be influenced by weather variability, confounding interpretations of restoration outcomes. To better understand the influence of weather variability on plant community dynamics, we explore change in a vegetation dataset collected between 1990 and 2005 at a historic tidal wetland reference site and a nearby tidal wetland restoration project initiated in 1976 in California’s San Francisco (SF) Bay. To determine the factors influencing reference and restoration trajectories, we examine changes in plant community identity in relation to annual salinity levels in the SF Bay, annual rainfall, and tidal channel structure. Over the entire study period, both sites experienced significant directional change away from the 1990 community. Community change was accelerated following low salinity conditions that resulted from strong El Niño events in 1994–1995 and 1997–1998. Overall rates of change were greater at the restoration site and driven by a combination of dominant and sub-dominant species, whereas change at the reference site was driven by sub-dominant species. Sub-dominant species first appeared at the restoration site in 1996 and incrementally increased during each subsequent year, whereas sub-dominant species cover at the reference site peaked in 1999 and subsequently declined. Our results show that frequent, long-term monitoring is needed to adequately capture plant community dynamics in variable Mediterranean ecosystems and demonstrate the need for expanding restoration monitoring and timing restoration actions to match weather conditions. Full article
Show Figures

Figure 1

3288 KiB  
Article
Climate Change Impacts and Water Management Adaptation in Two Mediterranean-Climate Watersheds: Learning from the Durance and Sacramento Rivers
by John T. Andrew and Eric Sauquet
Water 2017, 9(2), 126; https://doi.org/10.3390/w9020126 - 16 Feb 2017
Cited by 18 | Viewed by 7602
Abstract
Climate change is bringing more risk and uncertainty to water management in the world’s Mediterranean-climate regions. In this paper, we compare two Mediterranean-climate watersheds: the Durance basin in southern France, and the Sacramento River in northern California, USA. For the Durance basin, we [...] Read more.
Climate change is bringing more risk and uncertainty to water management in the world’s Mediterranean-climate regions. In this paper, we compare two Mediterranean-climate watersheds: the Durance basin in southern France, and the Sacramento River in northern California, USA. For the Durance basin, we present new research on climate change impacts on water management, and discuss their implications for potential adaptation responses. For the Sacramento River, we review existing climate data and research on impacts and describe the progress in implementing various adaptation strategies. We find that the Durance and Sacramento—while certainly at different scales—nonetheless share many characteristics, such as a highly variable climate and hydrology, and extensive hydromodification and intense water competition, which will be affected by climate change. Although some issues and approaches to adaptation are unique to each region, at the same time, these two river basins are utilizing some similar strategies to cope with a changing climate, such as regional planning and management and water conservation. Full article
Show Figures

Figure 1

10282 KiB  
Article
Restoring Summer Base Flow under a Decentralized Water Management Regime: Constraints, Opportunities, and Outcomes in Mediterranean-Climate California
by Matthew J. Deitch and Brock Dolman
Water 2017, 9(1), 29; https://doi.org/10.3390/w9010029 - 06 Jan 2017
Cited by 22 | Viewed by 6418
Abstract
Seasonal rainfall dynamics in Mediterranean-climate coastal California place pressures on humans and aquatic ecosystems. Without rainfall during summer, residents and land managers commonly turn to streams and adjacent shallow aquifers to meet domestic, irrigation, and recreational water needs, often depleting the water necessary [...] Read more.
Seasonal rainfall dynamics in Mediterranean-climate coastal California place pressures on humans and aquatic ecosystems. Without rainfall during summer, residents and land managers commonly turn to streams and adjacent shallow aquifers to meet domestic, irrigation, and recreational water needs, often depleting the water necessary to support stream biota. The potential for adverse ecological impacts within this coupled natural-human system has led to interest in restoring summer base flow (especially for federally protected steelhead and coho salmon, which depend on flow through the summer dry season for juvenile survival) through methods such as reducing dry-season water abstractions. Characterizing constraints and opportunities has proven useful for planning streamflow restoration in Mediterranean-climate coastal California. Biophysical parameters such as ample rainfall and very low summer discharge are critical considerations, but institutional parameters are equally important: regional management practices and state laws can inhibit streamflow restoration, and implementation is dependent on interrelationships among residents, agency staff, and other stakeholders (which we term the egosystem) within each watershed. Additionally, while watershed-scale spatial analysis and field-based evaluations provided a solid foundation for exploring streamflow restoration needs, adaptation based on information from local stakeholders was often essential for prioritizing projects and understanding whether projects will have their intended benefits. Full article
Show Figures

Figure 1

2854 KiB  
Article
Evolution of Two Urbanized Estuaries: Environmental Change, Legal Framework, and Implications for Sea-Level Rise Vulnerability
by Pedro J. Pinto and G. Mathias Kondolf
Water 2016, 8(11), 535; https://doi.org/10.3390/w8110535 - 16 Nov 2016
Cited by 10 | Viewed by 8795
Abstract
The San Francisco Bay (CA, USA) and the Tagus Estuary (Lisbon, Portugal) share striking similarities in terms of morphology and urban development. A finer analysis of development patterns reveals crucial differences in the extent of shoreline alteration and types of land use that [...] Read more.
The San Francisco Bay (CA, USA) and the Tagus Estuary (Lisbon, Portugal) share striking similarities in terms of morphology and urban development. A finer analysis of development patterns reveals crucial differences in the extent of shoreline alteration and types of land use that now encroach upon natural estuarine habitat. Through historical map analysis and prior stratigraphic and historical research, we reconstruct in GIS environment the evolution of both estuaries over the last millennia and the relative distribution of different classes of land cover. We also discuss the legal frameworks that accompanied this evolution, and how they have influenced the process of wetland reclamation and landfilling. We compared the legal history and synchronous patterns of development by compiling historical mapping information and resorting to GIS analysis to explore spatial patterns over time. This method was useful in isolating events and decisions that were unique to each of the case studies. The Tagus Estuary has experienced disruption of natural environments for over two millennia. Yet, the State has been able to keep estuarine lowlands under public control, even if vast areas have been transformed into farmland. Public control could allow wetland migration with rising seas and restoration efforts. The San Francisco Bay was affected by several decades of elevated sediment loads in the 19th century, which induced rapid wetland expansion, but virtual cutoff of sediment supply by dams in the 20th century now impairs their ability to accrete. Meanwhile, tidal wetlands were subject to extremely fast and poorly regulated development. Artificially filled and/or drained wetlands were transferred to local governments and private landowners, in violation of the Public Trust Doctrine. The transformation of wetlands into salt ponds, industrial zones and even residential neighborhoods created extensive developed areas at or below sea level, which are vulnerable to even modest rises in sea level. Remaining wetlands are now heavily encroached on their landward side by urban development, which prevents their landward migration. Different legal interpretations of comparable definitions of public trusts and jurisdictions over shorelines may have significant implications for the ability to adapt to sea-level rise. Full article
Show Figures

Figure 1

1277 KiB  
Article
Governing for Integrated Water and Flood Risk Management: Comparing Top-Down and Bottom-Up Approaches in Spain and California
by Anna Serra-Llobet, Esther Conrad and Kathleen Schaefer
Water 2016, 8(10), 445; https://doi.org/10.3390/w8100445 - 12 Oct 2016
Cited by 43 | Viewed by 10779
Abstract
Flood risk management in the context of Integrated Water Resource Management (IWRM) is becoming widely accepted as an approach to improving resilience in light of increasing flood risks due to climate change and other factors. This paper contributes to a better understanding of [...] Read more.
Flood risk management in the context of Integrated Water Resource Management (IWRM) is becoming widely accepted as an approach to improving resilience in light of increasing flood risks due to climate change and other factors. This paper contributes to a better understanding of the governance arrangements needed for effectively implement integrated approaches to managing flood risk. We compare how IWRM and flood risk management have been operationalized within “top-down” and “bottom-up” governance arrangements in the European Union and the United States. We focus in particular on two case study regions, the Catalan coastal region in Spain and the San Francisco Bay Area in California, which have strong similarities in economy, climate, and environmental values, but different institutional settings. Our findings contribute empirical evidence of the need for a balance between “top-down” and “bottom-up” approaches. While the San Francisco Bay Area’s strongly collaborative and participatory approach has generated new connections among flood managers and other stakeholders, the lack of a central entity with the capacity and mandate for on-going coordination and region-wide risk assessments appears to constrain its ability to support integrated and adaptive management. The European Union’s top-down approach and the presence of a central authority at the river basin scale have led to a consolidated regional plan in Catalonia encompassing all phases of flood risk management, but the degree of engagement and opportunities for knowledge-sharing among participants may be more limited. Full article
Show Figures

Figure 1

Review

Jump to: Research

14 pages, 3841 KiB  
Review
Sustainably Managing Reservoir Storage: Ancient Roots of a Modern Challenge
by G. Mathias Kondolf and Alan Farahani
Water 2018, 10(2), 117; https://doi.org/10.3390/w10020117 - 29 Jan 2018
Cited by 7 | Viewed by 5634
Abstract
Sedimentation is a major issue for water systems worldwide, but the need for sustainable sediment management is rarely addressed. This article surveys the problem of sedimentation in the contemporary sphere in addition to drawing on archaeological evidence of past unsustainable and sustainable sedimentation [...] Read more.
Sedimentation is a major issue for water systems worldwide, but the need for sustainable sediment management is rarely addressed. This article surveys the problem of sedimentation in the contemporary sphere in addition to drawing on archaeological evidence of past unsustainable and sustainable sedimentation management practices. A compact characterization scheme is presented for identifying the scale of sedimentation management, both past and present. The results of the research illustrate that communities have grappled with issues of sedimentation for as long as water storage has existed. System failure from sedimentation is therefore not inevitable, but arises from a combination of social and biophysical factors. Full article
Show Figures

Figure 1

3500 KiB  
Review
High Variability Is a Defining Component of Mediterranean-Climate Rivers and Their Biota
by Núria Cid, Núria Bonada, Stephanie M. Carlson, Theodore E. Grantham, Avital Gasith and Vincent H. Resh
Water 2017, 9(1), 52; https://doi.org/10.3390/w9010052 - 17 Jan 2017
Cited by 89 | Viewed by 11639
Abstract
Variability in flow as a result of seasonal precipitation patterns is a defining element of streams and rivers in Mediterranean-climate regions of the world and strongly influences the biota of these unique systems. Mediterranean-climate areas include the Mediterranean Basin and parts of Australia, [...] Read more.
Variability in flow as a result of seasonal precipitation patterns is a defining element of streams and rivers in Mediterranean-climate regions of the world and strongly influences the biota of these unique systems. Mediterranean-climate areas include the Mediterranean Basin and parts of Australia, California, Chile, and South Africa. Mediterranean streams and rivers can experience wet winters and consequent floods to severe droughts, when intermittency in otherwise perennial systems can occur. Inter-annual variation in precipitation can include multi-year droughts or consecutive wet years. Spatial variation in patterns of precipitation (rain vs. snow) combined with topographic variability lead to spatial variability in hydrologic patterns that influence populations and communities. Mediterranean streams and rivers are global biodiversity hotspots and are particularly vulnerable to human impacts. Biomonitoring, conservation efforts, and management responses to climate change require approaches that account for spatial and temporal variability (including both intra- and inter-annual). The importance of long-term data sets for understanding and managing these systems highlights the need for sustained and coordinated research efforts in Mediterranean-climate streams and rivers. Full article
Show Figures

Figure 1

Back to TopTop